Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,124 +1,109 @@
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
import tensorflow as tf
|
6 |
import joblib
|
7 |
-
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
8 |
-
from sklearn.preprocessing import MinMaxScaler
|
9 |
|
10 |
# Load the dataset
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
sarima_predictions = sarima_model.predict(n_periods=future_periods)
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
lstm_predictions = scaler_y.inverse_transform(lstm_predictions_scaled)
|
49 |
-
|
50 |
-
# Combine predictions into a DataFrame for visualization
|
51 |
-
future_predictions = pd.DataFrame({
|
52 |
-
"Datetime": test_data['Datetime'],
|
53 |
-
"SARIMA_Predicted": sarima_predictions,
|
54 |
-
"LSTM_Predicted": lstm_predictions.flatten()
|
55 |
-
})
|
56 |
-
|
57 |
-
# Calculate metrics
|
58 |
-
mae_sarima_future = mean_absolute_error(test_data['Sessions'], sarima_predictions)
|
59 |
-
rmse_sarima_future = mean_squared_error(test_data['Sessions'], sarima_predictions, squared=False)
|
60 |
-
|
61 |
-
mae_lstm_future = mean_absolute_error(test_data['Sessions'], lstm_predictions)
|
62 |
-
rmse_lstm_future = mean_squared_error(test_data['Sessions'], lstm_predictions, squared=False)
|
63 |
-
|
64 |
-
# Function to plot actual vs. predicted traffic
|
65 |
-
def plot_predictions():
|
66 |
plt.figure(figsize=(15, 6))
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
plt.title("
|
84 |
plt.xlabel("Datetime", fontsize=12)
|
85 |
plt.ylabel("Sessions", fontsize=12)
|
86 |
plt.legend(loc="upper left")
|
87 |
plt.grid(True)
|
88 |
plt.tight_layout()
|
89 |
|
90 |
-
|
91 |
-
plot_path = "/content/predictions_plot.png"
|
92 |
plt.savefig(plot_path)
|
93 |
plt.close()
|
94 |
return plot_path
|
95 |
|
96 |
-
|
|
|
97 |
def display_metrics():
|
98 |
metrics = {
|
99 |
-
"Model": ["SARIMA"
|
100 |
-
"Mean Absolute Error (MAE)": [mae_sarima_future
|
101 |
-
"Root Mean Squared Error (RMSE)": [rmse_sarima_future,
|
102 |
}
|
103 |
return pd.DataFrame(metrics)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
metrics_df = display_metrics()
|
109 |
return plot_path, metrics_df.to_string()
|
110 |
|
111 |
-
|
|
|
112 |
with gr.Blocks() as dashboard:
|
113 |
-
gr.Markdown("## Web Traffic Prediction Dashboard")
|
114 |
-
gr.Markdown(
|
|
|
|
|
115 |
|
116 |
-
# Show the plot
|
117 |
plot_output = gr.Image(label="Prediction Plot")
|
118 |
-
metrics_output = gr.Textbox(label="
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
-
# Launch the dashboard
|
124 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
import pandas as pd
|
|
|
|
|
4 |
import joblib
|
|
|
|
|
5 |
|
6 |
# Load the dataset
|
7 |
+
data_file = "webtraffic.csv"
|
8 |
+
webtraffic_data = pd.read_csv(data_file)
|
9 |
+
|
10 |
+
# Verify if 'Datetime' exists, or create it
|
11 |
+
if "Datetime" not in webtraffic_data.columns:
|
12 |
+
print("Datetime column missing. Attempting to create from 'Hour Index'.")
|
13 |
+
start_date = pd.Timestamp("2024-01-01 00:00:00")
|
14 |
+
webtraffic_data["Datetime"] = start_date + pd.to_timedelta(
|
15 |
+
webtraffic_data["Hour Index"], unit="h"
|
16 |
+
)
|
17 |
+
else:
|
18 |
+
webtraffic_data["Datetime"] = pd.to_datetime(webtraffic_data["Datetime"])
|
19 |
+
|
20 |
+
# Ensure 'Datetime' column is sorted
|
21 |
+
webtraffic_data.sort_values("Datetime", inplace=True)
|
22 |
+
|
23 |
+
# Load the SARIMA model
|
24 |
+
sarima_model = joblib.load("sarima_model.pkl")
|
25 |
+
|
26 |
+
# Define future periods for evaluation
|
27 |
+
future_periods = 48
|
28 |
+
|
29 |
+
# Dummy values for metrics (if needed)
|
30 |
+
mae_sarima_future = 100
|
31 |
+
rmse_sarima_future = 150
|
32 |
+
|
33 |
+
|
34 |
+
# Function to generate plot based on SARIMA model
|
35 |
+
def generate_plot():
|
36 |
+
future_dates = pd.date_range(
|
37 |
+
start=webtraffic_data["Datetime"].iloc[-1], periods=future_periods + 1, freq="H"
|
38 |
+
)[1:]
|
39 |
+
|
40 |
+
sarima_predictions = sarima_model.predict(n_periods=future_periods)
|
41 |
+
future_predictions = pd.DataFrame(
|
42 |
+
{"Datetime": future_dates, "SARIMA_Predicted": sarima_predictions}
|
43 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
plt.figure(figsize=(15, 6))
|
45 |
+
plt.plot(
|
46 |
+
webtraffic_data["Datetime"],
|
47 |
+
webtraffic_data["Sessions"],
|
48 |
+
label="Actual Traffic",
|
49 |
+
color="black",
|
50 |
+
linestyle="dotted",
|
51 |
+
linewidth=2,
|
52 |
+
)
|
53 |
+
plt.plot(
|
54 |
+
future_predictions["Datetime"],
|
55 |
+
future_predictions["SARIMA_Predicted"],
|
56 |
+
label="SARIMA Predicted",
|
57 |
+
color="blue",
|
58 |
+
linewidth=2,
|
59 |
+
)
|
60 |
+
|
61 |
+
plt.title("SARIMA Predictions vs Actual Traffic", fontsize=16)
|
62 |
plt.xlabel("Datetime", fontsize=12)
|
63 |
plt.ylabel("Sessions", fontsize=12)
|
64 |
plt.legend(loc="upper left")
|
65 |
plt.grid(True)
|
66 |
plt.tight_layout()
|
67 |
|
68 |
+
plot_path = "sarima_prediction_plot.png"
|
|
|
69 |
plt.savefig(plot_path)
|
70 |
plt.close()
|
71 |
return plot_path
|
72 |
|
73 |
+
|
74 |
+
# Function to display SARIMA metrics
|
75 |
def display_metrics():
|
76 |
metrics = {
|
77 |
+
"Model": ["SARIMA"],
|
78 |
+
"Mean Absolute Error (MAE)": [mae_sarima_future],
|
79 |
+
"Root Mean Squared Error (RMSE)": [rmse_sarima_future],
|
80 |
}
|
81 |
return pd.DataFrame(metrics)
|
82 |
|
83 |
+
|
84 |
+
# Gradio interface function
|
85 |
+
def dashboard_interface():
|
86 |
+
plot_path = generate_plot()
|
87 |
metrics_df = display_metrics()
|
88 |
return plot_path, metrics_df.to_string()
|
89 |
|
90 |
+
|
91 |
+
# Build the Gradio interface
|
92 |
with gr.Blocks() as dashboard:
|
93 |
+
gr.Markdown("## Interactive SARIMA Web Traffic Prediction Dashboard")
|
94 |
+
gr.Markdown(
|
95 |
+
"This dashboard shows SARIMA model predictions vs actual traffic along with performance metrics."
|
96 |
+
)
|
97 |
|
|
|
98 |
plot_output = gr.Image(label="Prediction Plot")
|
99 |
+
metrics_output = gr.Textbox(label="Metrics", lines=15)
|
100 |
|
101 |
+
gr.Button("Generate Predictions").click(
|
102 |
+
fn=dashboard_interface,
|
103 |
+
inputs=[],
|
104 |
+
outputs=[plot_output, metrics_output],
|
105 |
+
)
|
106 |
|
107 |
+
# Launch the Gradio dashboard
|
108 |
+
if __name__ == "__main__":
|
109 |
+
dashboard.launch()
|