Spaces:
Sleeping
Sleeping
Commit
·
f69d4dd
1
Parent(s):
873bd97
deployment issues
Browse files
app.py
CHANGED
|
@@ -28,11 +28,11 @@ lstm_model = tf.keras.models.load_model("lstm_model.keras") # LSTM model
|
|
| 28 |
scaler_X = MinMaxScaler(feature_range=(0, 1))
|
| 29 |
scaler_y = MinMaxScaler(feature_range=(0, 1))
|
| 30 |
|
| 31 |
-
#
|
| 32 |
X_train_scaled = scaler_X.fit_transform(train_data['Sessions'].values.reshape(-1, 1))
|
| 33 |
y_train_scaled = scaler_y.fit_transform(train_data['Sessions'].values.reshape(-1, 1))
|
| 34 |
|
| 35 |
-
# Scale
|
| 36 |
X_test_scaled = scaler_X.transform(test_data['Sessions'].values.reshape(-1, 1))
|
| 37 |
y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))
|
| 38 |
|
|
@@ -40,83 +40,85 @@ y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))
|
|
| 40 |
X_test_lstm = X_test_scaled.reshape((X_test_scaled.shape[0], 1, 1))
|
| 41 |
|
| 42 |
# Generate predictions for SARIMA
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
# Generate predictions for LSTM
|
| 46 |
-
lstm_predictions_scaled = lstm_model.predict(X_test_lstm)
|
| 47 |
-
lstm_predictions = scaler_y.inverse_transform(lstm_predictions_scaled)
|
| 48 |
|
| 49 |
# Combine predictions into a DataFrame for visualization
|
| 50 |
future_predictions = pd.DataFrame({
|
| 51 |
"Datetime": test_data['Datetime'],
|
| 52 |
"SARIMA_Predicted": sarima_predictions,
|
| 53 |
-
"LSTM_Predicted": lstm_predictions
|
| 54 |
})
|
| 55 |
|
| 56 |
# Calculate metrics
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
-
# Function to
|
| 64 |
-
def
|
| 65 |
-
"""Generate plot based on the selected model."""
|
| 66 |
plt.figure(figsize=(15, 6))
|
| 67 |
-
plt.plot(test_data['Datetime'], test_data['Sessions'], label='Actual Traffic', color='black', linestyle='dotted', linewidth=2)
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
plt.xlabel("Datetime", fontsize=12)
|
| 76 |
plt.ylabel("Sessions", fontsize=12)
|
| 77 |
plt.legend(loc="upper left")
|
| 78 |
plt.grid(True)
|
| 79 |
plt.tight_layout()
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
plt.savefig(plot_path)
|
| 82 |
plt.close()
|
| 83 |
return plot_path
|
| 84 |
|
| 85 |
-
# Function to display metrics
|
| 86 |
def display_metrics():
|
| 87 |
-
"""Generate metrics for both models."""
|
| 88 |
metrics = {
|
| 89 |
"Model": ["SARIMA", "LSTM"],
|
| 90 |
-
"Mean Absolute Error (MAE)": [
|
| 91 |
-
"Root Mean Squared Error (RMSE)": [
|
| 92 |
}
|
| 93 |
return pd.DataFrame(metrics)
|
| 94 |
|
| 95 |
-
# Gradio
|
| 96 |
-
def
|
| 97 |
-
|
| 98 |
-
plot_path = generate_plot(model)
|
| 99 |
metrics_df = display_metrics()
|
| 100 |
return plot_path, metrics_df.to_string()
|
| 101 |
|
| 102 |
-
#
|
| 103 |
with gr.Blocks() as dashboard:
|
| 104 |
gr.Markdown("## Web Traffic Prediction Dashboard")
|
| 105 |
-
gr.Markdown("
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
model_selection = gr.Dropdown(["SARIMA", "LSTM"], label="Select Model", value="SARIMA")
|
| 109 |
-
|
| 110 |
-
# Outputs: Plot and Metrics
|
| 111 |
plot_output = gr.Image(label="Prediction Plot")
|
| 112 |
-
metrics_output = gr.Textbox(label="Metrics", lines=
|
| 113 |
-
|
| 114 |
-
#
|
| 115 |
-
gr.Button("Update Dashboard").click(
|
| 116 |
-
fn=dashboard_interface,
|
| 117 |
-
inputs=[model_selection],
|
| 118 |
-
outputs=[plot_output, metrics_output]
|
| 119 |
-
)
|
| 120 |
|
| 121 |
# Launch the dashboard
|
| 122 |
dashboard.launch()
|
|
|
|
| 28 |
scaler_X = MinMaxScaler(feature_range=(0, 1))
|
| 29 |
scaler_y = MinMaxScaler(feature_range=(0, 1))
|
| 30 |
|
| 31 |
+
# Scale training data
|
| 32 |
X_train_scaled = scaler_X.fit_transform(train_data['Sessions'].values.reshape(-1, 1))
|
| 33 |
y_train_scaled = scaler_y.fit_transform(train_data['Sessions'].values.reshape(-1, 1))
|
| 34 |
|
| 35 |
+
# Scale test data
|
| 36 |
X_test_scaled = scaler_X.transform(test_data['Sessions'].values.reshape(-1, 1))
|
| 37 |
y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))
|
| 38 |
|
|
|
|
| 40 |
X_test_lstm = X_test_scaled.reshape((X_test_scaled.shape[0], 1, 1))
|
| 41 |
|
| 42 |
# Generate predictions for SARIMA
|
| 43 |
+
future_periods = len(test_data)
|
| 44 |
+
sarima_predictions = sarima_model.predict(n_periods=future_periods)
|
| 45 |
|
| 46 |
# Generate predictions for LSTM
|
| 47 |
+
lstm_predictions_scaled = lstm_model.predict(X_test_lstm[:future_periods])
|
| 48 |
+
lstm_predictions = scaler_y.inverse_transform(lstm_predictions_scaled)
|
| 49 |
|
| 50 |
# Combine predictions into a DataFrame for visualization
|
| 51 |
future_predictions = pd.DataFrame({
|
| 52 |
"Datetime": test_data['Datetime'],
|
| 53 |
"SARIMA_Predicted": sarima_predictions,
|
| 54 |
+
"LSTM_Predicted": lstm_predictions.flatten()
|
| 55 |
})
|
| 56 |
|
| 57 |
# Calculate metrics
|
| 58 |
+
mae_sarima_future = mean_absolute_error(test_data['Sessions'], sarima_predictions)
|
| 59 |
+
rmse_sarima_future = mean_squared_error(test_data['Sessions'], sarima_predictions, squared=False)
|
| 60 |
|
| 61 |
+
mae_lstm_future = mean_absolute_error(test_data['Sessions'], lstm_predictions)
|
| 62 |
+
rmse_lstm_future = mean_squared_error(test_data['Sessions'], lstm_predictions, squared=False)
|
| 63 |
|
| 64 |
+
# Function to plot actual vs. predicted traffic
|
| 65 |
+
def plot_predictions():
|
|
|
|
| 66 |
plt.figure(figsize=(15, 6))
|
|
|
|
| 67 |
|
| 68 |
+
# Plot actual traffic
|
| 69 |
+
plt.plot(webtraffic_data['Datetime'].iloc[-future_periods:],
|
| 70 |
+
test_data['Sessions'].values[-future_periods:],
|
| 71 |
+
label='Actual Traffic', color='black', linestyle='dotted', linewidth=2)
|
| 72 |
|
| 73 |
+
# Plot SARIMA predictions
|
| 74 |
+
plt.plot(future_predictions['Datetime'],
|
| 75 |
+
future_predictions['SARIMA_Predicted'],
|
| 76 |
+
label='SARIMA Predicted', color='blue', linewidth=2)
|
| 77 |
+
|
| 78 |
+
# Plot LSTM predictions
|
| 79 |
+
plt.plot(future_predictions['Datetime'],
|
| 80 |
+
future_predictions['LSTM_Predicted'],
|
| 81 |
+
label='LSTM Predicted', color='green', linewidth=2)
|
| 82 |
+
|
| 83 |
+
plt.title("Future Traffic Predictions: SARIMA vs LSTM", fontsize=16)
|
| 84 |
plt.xlabel("Datetime", fontsize=12)
|
| 85 |
plt.ylabel("Sessions", fontsize=12)
|
| 86 |
plt.legend(loc="upper left")
|
| 87 |
plt.grid(True)
|
| 88 |
plt.tight_layout()
|
| 89 |
+
|
| 90 |
+
# Save the plot to a file
|
| 91 |
+
plot_path = "/content/predictions_plot.png"
|
| 92 |
plt.savefig(plot_path)
|
| 93 |
plt.close()
|
| 94 |
return plot_path
|
| 95 |
|
| 96 |
+
# Function to display prediction metrics
|
| 97 |
def display_metrics():
|
|
|
|
| 98 |
metrics = {
|
| 99 |
"Model": ["SARIMA", "LSTM"],
|
| 100 |
+
"Mean Absolute Error (MAE)": [mae_sarima_future, mae_lstm_future],
|
| 101 |
+
"Root Mean Squared Error (RMSE)": [rmse_sarima_future, rmse_lstm_future]
|
| 102 |
}
|
| 103 |
return pd.DataFrame(metrics)
|
| 104 |
|
| 105 |
+
# Gradio function to display the dashboard
|
| 106 |
+
def gradio_dashboard():
|
| 107 |
+
plot_path = plot_predictions()
|
|
|
|
| 108 |
metrics_df = display_metrics()
|
| 109 |
return plot_path, metrics_df.to_string()
|
| 110 |
|
| 111 |
+
# Gradio interface
|
| 112 |
with gr.Blocks() as dashboard:
|
| 113 |
gr.Markdown("## Web Traffic Prediction Dashboard")
|
| 114 |
+
gr.Markdown("This dashboard compares predictions from SARIMA and LSTM models.")
|
| 115 |
|
| 116 |
+
# Show the plot
|
|
|
|
|
|
|
|
|
|
| 117 |
plot_output = gr.Image(label="Prediction Plot")
|
| 118 |
+
metrics_output = gr.Textbox(label="Prediction Metrics", lines=15)
|
| 119 |
+
|
| 120 |
+
# Define the Gradio button and actions
|
| 121 |
+
gr.Button("Update Dashboard").click(gradio_dashboard, outputs=[plot_output, metrics_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
# Launch the dashboard
|
| 124 |
dashboard.launch()
|