Spaces:
Running
Running
File size: 69,850 Bytes
a4ebbbf 99ebc67 a4ebbbf e8282b4 a4ebbbf e8282b4 a4ebbbf 99ebc67 a4ebbbf 99ebc67 a4ebbbf e8282b4 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 14f98db ee3a763 4968617 3615f62 4968617 d0e3fb3 4968617 3615f62 4968617 3615f62 4968617 d0e3fb3 6ce9877 3615f62 4968617 3615f62 4968617 3615f62 4968617 3615f62 4968617 3615f62 4968617 3615f62 4968617 3615f62 4968617 3615f62 4968617 3615f62 4968617 3615f62 4968617 3a62c95 4968617 3a62c95 4968617 3a62c95 4968617 3a62c95 4968617 414a8e5 4968617 414a8e5 4968617 3a62c95 4968617 2838aaa 4968617 2838aaa 3a62c95 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 414a8e5 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 4968617 2838aaa 3615f62 2838aaa 3615f62 2838aaa 3615f62 2838aaa 3a62c95 3615f62 414a8e5 3615f62 414a8e5 3615f62 20b6588 8031781 20b6588 260fa6e f5ddeca 260fa6e f5ddeca 260fa6e f5ddeca 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e 20b6588 260fa6e f5ddeca 260fa6e f5ddeca 260fa6e f5ddeca 902a263 f5ddeca 260fa6e 20b6588 f8de84c 4968617 260fa6e b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3bf13e b3d49bc 4968617 b3d49bc 4968617 b3d49bc b3bf13e b3d49bc 4968617 b3bf13e b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3bf13e b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3d49bc 4968617 b3bf13e b3d49bc 3123f90 b3d49bc 4968617 b3d49bc 4968617 260fa6e 451c62f 4968617 260fa6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 |
import gradio as gr
import os
import json
import uuid
from datetime import datetime
from groq import Groq
# Set up Groq API key
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY environment variable not set.")
client = Groq(api_key=GROQ_API_KEY)
# Default system prompt
SYSTEM_PROMPT = (
"You are an intelligent, friendly, and highly adaptable Teaching Assistant Chatbot. "
"Your mission is to help users of all ages and skill levels—from complete beginners to seasoned professionals—learn Python, Data Science, and Artificial Intelligence. "
"You explain concepts clearly using real-world analogies, examples, and interactive exercises. "
"You ask questions to assess the learner's level, adapt accordingly, and provide learning paths tailored to their pace and goals. "
"Your responses are structured, engaging, and supportive. "
"You can explain code snippets, generate exercises and quizzes, and recommend projects. "
"You never overwhelm users with jargon. Instead, you scaffold complex concepts in simple, digestible steps."
)
# Define learning paths
LEARNING_PATHS = {
"python_beginner": {
"title": "Python Fundamentals",
"description": "Learn Python basics from variables to functions",
"modules": [
"Variables & Data Types",
"Control Flow",
"Functions",
"Data Structures",
"File I/O"
]
},
"python_intermediate": {
"title": "Intermediate Python",
"description": "Advance your Python skills with OOP and more",
"modules": [
"Object-Oriented Programming",
"Modules & Packages",
"Error Handling",
"List Comprehensions",
"Decorators & Generators"
]
},
"data_science_beginner": {
"title": "Data Science Foundations",
"description": "Begin your data science journey",
"modules": [
"Numpy Basics",
"Pandas Fundamentals",
"Data Visualization",
"Basic Statistics",
"Intro to Machine Learning"
]
},
"data_science_advanced": {
"title": "Advanced Data Science",
"description": "Master complex data science concepts",
"modules": [
"Advanced ML Algorithms",
"Feature Engineering",
"Time Series Analysis",
"Natural Language Processing",
"Deep Learning Basics"
]
},
"ai_specialization": {
"title": "AI Specialization",
"description": "Focus on artificial intelligence concepts",
"modules": [
"Neural Networks",
"Computer Vision",
"Advanced NLP",
"Reinforcement Learning",
"AI Ethics"
]
},
"generative_ai": {
"title": "Generative AI",
"description": "Learn how to build and work with generative AI systems",
"modules": [
"Generative Models Overview",
"GANs & Diffusion Models",
"Large Language Models",
"Prompt Engineering",
"Fine-tuning & RLHF"
]
},
"agentic_ai": {
"title": "Agentic AI Systems",
"description": "Explore AI systems that can act autonomously",
"modules": [
"Foundations of AI Agents",
"Planning & Decision Making",
"Tool-using AI Systems",
"Multi-agent Architectures",
"Human-AI Collaboration"
]
}
}
# Learning resources organized by learning style
LEARNING_RESOURCES = {
"Visual": {
"python_beginner": [
{"title": "Python Crash Course Visual Guide", "url": "https://nostarch.com/pythoncrashcourse2e"},
{"title": "Video Course: Python for Everybody", "url": "https://www.py4e.com/"},
{"title": "Python Visualizations and Infographics", "url": "https://python-graph-gallery.com/"},
{"title": "Visual Studio Code Python Tutorial", "url": "https://code.visualstudio.com/docs/python/python-tutorial"}
],
"python_intermediate": [
{"title": "Fluent Python with Visual Examples", "url": "https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/"},
{"title": "Python Design Patterns Visualized", "url": "https://refactoring.guru/design-patterns/python"},
{"title": "Interactive Python Visualizer", "url": "https://pythontutor.com/"},
{"title": "Visual Guide to Python Testing", "url": "https://pragprog.com/titles/bopytest/python-testing-with-pytest/"}
],
"data_science_beginner": [
{"title": "Data Visualization with Python and Seaborn", "url": "https://seaborn.pydata.org/tutorial.html"},
{"title": "Kaggle Learn: Data Visualization", "url": "https://www.kaggle.com/learn/data-visualization"},
{"title": "DataCamp Python Data Visualization", "url": "https://www.datacamp.com/courses/introduction-to-data-visualization-with-python"},
{"title": "Plotly Python Graphing Library", "url": "https://plotly.com/python/"}
],
"data_science_advanced": [
{"title": "Visualization in Machine Learning", "url": "https://machinelearningmastery.com/data-visualization-for-machine-learning/"},
{"title": "Visual Hands-On Machine Learning", "url": "https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/"},
{"title": "Stanford ML: Visual Guide to Neural Networks", "url": "https://see.stanford.edu/Course/CS229"},
{"title": "Animated ML Algorithm Visualizations", "url": "https://www.youtube.com/c/3blue1brown"}
],
"ai_specialization": [
{"title": "DeepLearning.AI Video Courses", "url": "https://www.deeplearning.ai/"},
{"title": "TensorFlow Playground", "url": "https://playground.tensorflow.org/"},
{"title": "Visual Guide to Neural Networks", "url": "https://pytorch.org/tutorials/"},
{"title": "GANs Explained Visually", "url": "https://poloclub.github.io/ganlab/"}
],
"generative_ai": [
{"title": "Visualizing Large Language Models", "url": "https://karpathy.ai/zero-to-hero.html"},
{"title": "Diffusion Models Visual Guide", "url": "https://huggingface.co/learn/diffusion-models/"},
{"title": "Visual Prompt Engineering Guide", "url": "https://www.promptingguide.ai/"},
{"title": "Stable Diffusion Visual Tutorial", "url": "https://stability.ai/learn"}
],
"agentic_ai": [
{"title": "Visual Guide to LangChain", "url": "https://python.langchain.com/docs/get_started/introduction"},
{"title": "Illustrated AutoGen Guide", "url": "https://microsoft.github.io/autogen/"},
{"title": "Visual Multi-Agent Simulations", "url": "https://www.anthropic.com/research/debate"},
{"title": "Animated Reinforcement Learning", "url": "https://rail.eecs.berkeley.edu/deeprlcourse/"}
]
},
"Reading/Writing": {
"python_beginner": [
{"title": "Python Documentation", "url": "https://docs.python.org/3/"},
{"title": "Real Python Text Tutorials", "url": "https://realpython.com/"},
{"title": "Automate the Boring Stuff with Python", "url": "https://automatetheboringstuff.com/"},
{"title": "Think Python (Free eBook)", "url": "https://greenteapress.com/wp/think-python-2e/"}
],
"python_intermediate": [
{"title": "Fluent Python (Book)", "url": "https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/"},
{"title": "Effective Python (Book)", "url": "https://effectivepython.com/"},
{"title": "Python Cookbook (Book)", "url": "https://www.oreilly.com/library/view/python-cookbook-3rd/9781449357337/"},
{"title": "Full Stack Python (Text Tutorials)", "url": "https://www.fullstackpython.com/"}
],
"data_science_beginner": [
{"title": "Python Data Science Handbook", "url": "https://jakevdp.github.io/PythonDataScienceHandbook/"},
{"title": "Towards Data Science (Articles)", "url": "https://towardsdatascience.com/"},
{"title": "Introduction to Statistical Learning", "url": "https://www.statlearning.com/"},
{"title": "Data Science from Scratch (Book)", "url": "https://www.oreilly.com/library/view/data-science-from/9781492041122/"}
],
"data_science_advanced": [
{"title": "Machine Learning Mastery (Text Tutorials)", "url": "https://machinelearningmastery.com/"},
{"title": "Deep Learning Book", "url": "https://www.deeplearningbook.org/"},
{"title": "Elements of Statistical Learning", "url": "https://web.stanford.edu/~hastie/ElemStatLearn/"},
{"title": "Dive into Deep Learning", "url": "https://d2l.ai/"}
],
"ai_specialization": [
{"title": "Artificial Intelligence: A Modern Approach", "url": "http://aima.cs.berkeley.edu/"},
{"title": "Deep Learning (Book)", "url": "https://www.deeplearningbook.org/"},
{"title": "Stanford ML Course Notes", "url": "https://see.stanford.edu/Course/CS229"},
{"title": "ArXiv Machine Learning Papers", "url": "https://arxiv.org/list/cs.LG/recent"}
],
"generative_ai": [
{"title": "LLM Introduction Paper", "url": "https://arxiv.org/abs/2303.18223"},
{"title": "Generative AI Guide (eBook)", "url": "https://www.oreilly.com/library/view/generative-deep-learning/9781492041931/"},
{"title": "Prompt Engineering Guide", "url": "https://www.promptingguide.ai/"},
{"title": "Stanford CS324: LLM Course Notes", "url": "https://stanford-cs324.github.io/winter2022/"}
],
"agentic_ai": [
{"title": "LangChain Documentation", "url": "https://python.langchain.com/docs/get_started/introduction"},
{"title": "Agentic AI Papers Collection", "url": "https://arxiv.org/abs/2304.03442"},
{"title": "Multi-Agent Debate Research", "url": "https://www.anthropic.com/research/debate"},
{"title": "Reinforcement Learning: An Introduction", "url": "http://incompleteideas.net/book/the-book-2nd.html"}
]
},
"Hands-on Projects": {
"python_beginner": [
{"title": "Project-Based Python Tutorial", "url": "https://projectbasedpython.com/"},
{"title": "Exercism: Python Track", "url": "https://exercism.org/tracks/python"},
{"title": "Python Project Ideas with Code", "url": "https://github.com/topics/python-projects"},
{"title": "Build 5 Mini Python Projects", "url": "https://www.freecodecamp.org/news/python-projects-for-beginners/"}
],
"python_intermediate": [
{"title": "Django Project Tutorial", "url": "https://docs.djangoproject.com/en/stable/intro/tutorial01/"},
{"title": "Flask Mega-Tutorial", "url": "https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world"},
{"title": "Python Project Cookbook", "url": "https://pythonprojectcookbook.com/"},
{"title": "Real-world Python Projects", "url": "https://realpython.com/tutorials/projects/"}
],
"data_science_beginner": [
{"title": "Kaggle: Intro to Machine Learning", "url": "https://www.kaggle.com/learn/intro-to-machine-learning"},
{"title": "Data Science Projects with Python", "url": "https://github.com/PacktPublishing/Data-Science-Projects-with-Python"},
{"title": "DataCamp Projects", "url": "https://www.datacamp.com/projects"},
{"title": "Practical Data Analysis Projects", "url": "https://www.dataquest.io/data-science-projects/"}
],
"data_science_advanced": [
{"title": "Applied Machine Learning Projects", "url": "https://github.com/practical-tutorials/project-based-learning#python"},
{"title": "Kaggle Competitions", "url": "https://www.kaggle.com/competitions"},
{"title": "Building ML Pipelines", "url": "https://www.oreilly.com/library/view/building-machine-learning/9781492053187/"},
{"title": "ML Project Walkthroughs", "url": "https://machinelearningmastery.com/start-here/#projects"}
],
"ai_specialization": [
{"title": "TensorFlow Tutorials & Projects", "url": "https://www.tensorflow.org/tutorials"},
{"title": "PyTorch Projects Collection", "url": "https://pytorch.org/tutorials/beginner/pytorch_with_examples.html"},
{"title": "Hugging Face Project Walkthroughs", "url": "https://huggingface.co/learn"},
{"title": "Computer Vision Projects", "url": "https://www.pyimagesearch.com/"}
],
"generative_ai": [
{"title": "Build Your Own LLM Application", "url": "https://buildyourowngpt.com/"},
{"title": "Generative Art Projects", "url": "https://genart.tech/"},
{"title": "LangChain Project Tutorials", "url": "https://python.langchain.com/docs/get_started/introduction"},
{"title": "Fine-tuning LLMs: Hands-on Guide", "url": "https://huggingface.co/blog/how-to-train"}
],
"agentic_ai": [
{"title": "Build an AI Agent with LangChain", "url": "https://python.langchain.com/docs/use_cases/autonomous_agents"},
{"title": "AutoGen Projects", "url": "https://microsoft.github.io/autogen/docs/examples/"},
{"title": "Building Autonomous AI Systems", "url": "https://github.com/yoheinakajima/babyagi"},
{"title": "Tool-using AI Projects", "url": "https://github.com/hwchase17/langchain-experiments"}
]
},
"Video Tutorials": {
"python_beginner": [
{"title": "CS50's Introduction to Programming with Python", "url": "https://cs50.harvard.edu/python/"},
{"title": "freeCodeCamp Python Course", "url": "https://www.freecodecamp.org/learn/scientific-computing-with-python/"}
],
"python_intermediate": [
{"title": "MIT OpenCourseWare: Python", "url": "https://ocw.mit.edu/courses/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/"}
],
"data_science_beginner": [
{"title": "freeCodeCamp Data Analysis Course", "url": "https://www.freecodecamp.org/learn/data-analysis-with-python/"}
],
"data_science_advanced": [
{"title": "Machine Learning Course by Andrew Ng", "url": "https://www.coursera.org/learn/machine-learning"},
{"title": "Deep Learning Specialization", "url": "https://www.deeplearning.ai/deep-learning-specialization/"}
],
"ai_specialization": [
{"title": "MIT 6.S191: Introduction to Deep Learning", "url": "http://introtodeeplearning.com/"}
],
"generative_ai": [
{"title": "Neural Networks: Zero to Hero", "url": "https://karpathy.ai/zero-to-hero.html"},
{"title": "Prompt Engineering for LLMs", "url": "https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/"}
],
"agentic_ai": [
{"title": "Building AI Agents with LangChain", "url": "https://www.youtube.com/watch?v=iw2Wcw7qPuE"},
{"title": "AutoGPT and Multi-Agent Systems", "url": "https://www.youtube.com/watch?v=4YaILFaUXTo"}
]
},
"Interactive Exercises": {
"python_beginner": [
{"title": "CodeCademy Python Course", "url": "https://www.codecademy.com/learn/learn-python-3"},
{"title": "CheckiO Python Challenges", "url": "https://py.checkio.org/"},
{"title": "Python Tutor", "url": "https://pythontutor.com/"},
{"title": "HackerRank Python Practice", "url": "https://www.hackerrank.com/domains/python"}
],
"python_intermediate": [
{"title": "Exercism Python Track", "url": "https://exercism.org/tracks/python"},
{"title": "CodeWars Python Challenges", "url": "https://www.codewars.com/?language=python"},
{"title": "LeetCode Python Problems", "url": "https://leetcode.com/problemset/all/?difficulty=EASY&page=1&languageTags=python"},
{"title": "Project Euler", "url": "https://projecteuler.net/"}
],
"data_science_beginner": [
{"title": "DataCamp Interactive Courses", "url": "https://www.datacamp.com/courses/free-introduction-to-r"},
{"title": "Kaggle Learn Interactive Tutorials", "url": "https://www.kaggle.com/learn/overview"},
{"title": "DataQuest Interactive Data Science", "url": "https://www.dataquest.io/"},
{"title": "Google's Data Analytics Course", "url": "https://www.coursera.org/professional-certificates/google-data-analytics"}
],
"data_science_advanced": [
{"title": "Interactive ML Course", "url": "https://www.coursera.org/learn/machine-learning"},
{"title": "Kaggle Interactive Competitions", "url": "https://www.kaggle.com/competitions"},
{"title": "Interactive Deep Learning", "url": "https://www.deeplearning.ai/courses/"},
{"title": "Machine Learning Playground", "url": "https://ml-playground.com/"}
],
"ai_specialization": [
{"title": "TensorFlow Playground", "url": "https://playground.tensorflow.org/"},
{"title": "Interactive Neural Network Builder", "url": "https://alexlenail.me/NN-SVG/"},
{"title": "AI Experiments with Google", "url": "https://experiments.withgoogle.com/collection/ai"},
{"title": "OpenAI Gym", "url": "https://www.gymlibrary.dev/"}
],
"generative_ai": [
{"title": "Hugging Face Spaces", "url": "https://huggingface.co/spaces"},
{"title": "Interactive LLM Playground", "url": "https://platform.openai.com/playground"},
{"title": "Interactive Stable Diffusion", "url": "https://huggingface.co/spaces/stabilityai/stable-diffusion"},
{"title": "GPT-4 Interactive Demos", "url": "https://chat.openai.com/"}
],
"agentic_ai": [
{"title": "LangChain Interactive Tutorials", "url": "https://python.langchain.com/docs/get_started/introduction"},
{"title": "Interactive AI Agent Builder", "url": "https://github.com/microsoft/TaskMatrix"},
{"title": "AutoGen Playground", "url": "https://microsoft.github.io/autogen/"},
{"title": "Reinforcement Learning Interactive Course", "url": "https://www.coursera.org/specializations/reinforcement-learning"}
]
},
"Combination": {
"python_beginner": [
{"title": "Python Documentation", "url": "https://docs.python.org/3/"},
{"title": "Real Python", "url": "https://realpython.com/"},
{"title": "Python for Everybody", "url": "https://www.py4e.com/"},
{"title": "Automate the Boring Stuff with Python", "url": "https://automatetheboringstuff.com/"}
],
"python_intermediate": [
{"title": "Fluent Python", "url": "https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/"},
{"title": "Python Design Patterns", "url": "https://refactoring.guru/design-patterns/python"},
{"title": "Full Stack Python", "url": "https://www.fullstackpython.com/"},
{"title": "Python Testing with pytest", "url": "https://pragprog.com/titles/bopytest/python-testing-with-pytest/"}
],
"data_science_beginner": [
{"title": "Kaggle Learn", "url": "https://www.kaggle.com/learn"},
{"title": "Towards Data Science", "url": "https://towardsdatascience.com/"},
{"title": "DataCamp", "url": "https://www.datacamp.com/"},
{"title": "Python Data Science Handbook", "url": "https://jakevdp.github.io/PythonDataScienceHandbook/"}
],
"data_science_advanced": [
{"title": "Machine Learning Mastery", "url": "https://machinelearningmastery.com/"},
{"title": "Hands-On Machine Learning with Scikit-Learn", "url": "https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/"},
{"title": "Fast.ai", "url": "https://www.fast.ai/"},
{"title": "Stanford CS229: Machine Learning", "url": "https://see.stanford.edu/Course/CS229"}
],
"ai_specialization": [
{"title": "DeepLearning.AI", "url": "https://www.deeplearning.ai/"},
{"title": "TensorFlow Tutorials", "url": "https://www.tensorflow.org/tutorials"},
{"title": "PyTorch Tutorials", "url": "https://pytorch.org/tutorials/"},
{"title": "Hugging Face Course", "url": "https://huggingface.co/learn"}
],
"generative_ai": [
{"title": "Andrej Karpathy's Neural Networks Course", "url": "https://karpathy.ai/zero-to-hero.html"},
{"title": "Hugging Face Diffusion Models Course", "url": "https://huggingface.co/learn/diffusion-models/"},
{"title": "Prompt Engineering Guide", "url": "https://www.promptingguide.ai/"},
{"title": "Stanford CS324: Large Language Models", "url": "https://stanford-cs324.github.io/winter2022/"}
],
"agentic_ai": [
{"title": "LangChain Documentation", "url": "https://python.langchain.com/docs/get_started/introduction"},
{"title": "Microsoft AutoGen", "url": "https://microsoft.github.io/autogen/"},
{"title": "Multi-Agent Debate by Anthropic", "url": "https://www.anthropic.com/research/debate"},
{"title": "Berkeley CS285: Deep Reinforcement Learning", "url": "https://rail.eecs.berkeley.edu/deeprlcourse/"}
]
}
}
PROJECT_IDEAS = {
"Visual": {
"python_beginner": [
"Data Visualization Dashboard with Matplotlib",
"Interactive Game with Pygame",
"Visual Timer Application with Tkinter",
"Color Palette Generator",
"Image Processing Tool"
],
"python_intermediate": [
"Data Visualization Web App with Flask and D3.js",
"Interactive Map Application",
"Animated Data Dashboard",
"Custom Visualization Library",
"Image Recognition System"
],
"data_science_beginner": [
"Interactive Data Dashboard with Plotly",
"Visual Exploratory Data Analysis Tool",
"Chart Comparison Application",
"Geographic Data Visualization",
"Statistical Visualization Gallery"
],
"data_science_advanced": [
"Real-time Visual Analytics Dashboard",
"Machine Learning Model Visualizer",
"Neural Network Visualization Tool",
"Computer Vision Project",
"Interactive Data Storytelling Platform"
],
"ai_specialization": [
"Neural Network Architecture Visualizer",
"Interactive AI Learning Environment",
"Computer Vision Object Detector",
"Visual Pattern Recognition System",
"Brain-Computer Interface Visualization"
],
"generative_ai": [
"Style Transfer Art Generator",
"Visual AI Art Gallery",
"Image Generation Dashboard",
"Interactive Text-to-Image System",
"Visual Prompt Engineering Tool"
],
"agentic_ai": [
"Visual Agent Environment Simulator",
"Agent Decision Tree Visualizer",
"Multi-Agent Interaction Visualization",
"Visual Reinforcement Learning Playground",
"Interactive Agent Behavior Explorer"
]
},
"Reading/Writing": {
"python_beginner": [
"Text File Processing Tool",
"Personal Journal Application",
"Notes Organization System",
"Simple Blog Platform",
"Document Analyzer"
],
"python_intermediate": [
"Advanced Text Editor",
"Markdown Documentation Generator",
"Content Management System",
"Personal Wiki Platform",
"Technical Documentation Tool"
],
"data_science_beginner": [
"Text Data Analysis Tool",
"Literature Review Database",
"Research Paper Summarizer",
"Study Notes Organizer",
"Data Analysis Report Generator"
],
"data_science_advanced": [
"Research Paper Recommendation System",
"Advanced NLP Analysis Tool",
"Automated Report Generator",
"Literature Review AI Assistant",
"Technical Writing Assistant"
],
"ai_specialization": [
"Text Summarization System",
"AI-Powered Document Analysis",
"Scientific Paper Classification Tool",
"Sentiment Analysis for Literature",
"Technical Writing Enhancement System"
],
"generative_ai": [
"AI Writing Assistant",
"Creative Story Generator",
"Academic Paper Generator",
"LLM-Powered Documentation Tool",
"Custom Prompt Engineering Workbook"
],
"agentic_ai": [
"AI Research Assistant Agent",
"Technical Documentation Generator",
"Writing Style Analyzer",
"Text-Based Agent Environment",
"AI-Powered Knowledge Management System"
]
},
"Hands-on Projects": {
"python_beginner": [
"Weather App with API Integration",
"To-Do List Application",
"Simple Calculator",
"Basic Web Scraper",
"File Organizer Tool"
],
"python_intermediate": [
"REST API with Flask or Django",
"Web Application with User Authentication",
"Automated Testing Framework",
"Command-Line Tool with Click",
"Desktop Application with PyQt"
],
"data_science_beginner": [
"Exploratory Data Analysis Project",
"Basic Machine Learning Model",
"Data Cleaning Pipeline",
"Simple Predictive Model",
"Dataset Visualization Tool"
],
"data_science_advanced": [
"End-to-End Machine Learning Pipeline",
"Model Deployment with Flask/FastAPI",
"Time Series Forecasting Application",
"Natural Language Processing Tool",
"Recommendation System"
],
"ai_specialization": [
"Custom Neural Network Implementation",
"Image Classification Application",
"NLP Chatbot",
"Reinforcement Learning Environment",
"Computer Vision Project"
],
"generative_ai": [
"Fine-tuned LLM Application",
"Text-to-Image Generation Tool",
"Music Generation System",
"Creative Writing AI Assistant",
"Voice Synthesis Application"
],
"agentic_ai": [
"Autonomous Task Execution Agent",
"Multi-Agent Simulation",
"Tool-Using AI Assistant",
"AI Agent for Data Analysis",
"Agent-Based Decision Support System"
]
},
"Video Tutorials": {
"python_beginner": [
"Educational Python Basics Series",
"Interactive Coding Tutorial Videos",
"Python Concept Explanation Screencast",
"Code-Along Project Videos",
"Python Tips and Tricks Channel"
],
"python_intermediate": [
"Advanced Python Features Tutorial Series",
"Framework Deep-Dive Videos",
"Performance Optimization Screencasts",
"Design Patterns in Python Series",
"Testing and Debugging Tutorials"
],
"data_science_beginner": [
"Data Analysis Walkthrough Series",
"Statistics Visualization Tutorials",
"Data Cleaning Process Videos",
"Basic Machine Learning Model Tutorials",
"Data Visualization Guide Videos"
],
"data_science_advanced": [
"Advanced ML Algorithm Explanations",
"Feature Engineering Masterclass",
"Model Optimization Techniques Series",
"ML Pipeline Development Videos",
"Model Deployment Tutorials"
],
"ai_specialization": [
"Neural Network Architecture Explanations",
"Deep Learning Framework Tutorials",
"Computer Vision Project Series",
"NLP Implementation Videos",
"AI Ethics Discussion Series"
],
"generative_ai": [
"LLM Implementation Tutorials",
"Diffusion Model Training Guide",
"Prompt Engineering Masterclass",
"Fine-tuning Walkthrough Videos",
"Generative AI Application Tutorials"
],
"agentic_ai": [
"AI Agent Development Series",
"Multi-Agent System Tutorials",
"LangChain Implementation Videos",
"Tool-Using AI Development Guide",
"Agent Communication Protocol Tutorials"
]
},
"Interactive Exercises": {
"python_beginner": [
"Python Syntax Practice Platform",
"Interactive Coding Challenge Website",
"Function Implementation Exercises",
"Python Puzzle Game",
"Basic Algorithm Challenge Series"
],
"python_intermediate": [
"Object-Oriented Programming Exercises",
"Advanced Data Structure Challenges",
"Algorithm Optimization Problems",
"Design Pattern Implementation Tasks",
"Testing Framework Exercise Platform"
],
"data_science_beginner": [
"Data Cleaning Exercise Platform",
"Statistical Analysis Practice Problems",
"Basic ML Model Implementation Challenges",
"Data Visualization Exercise Series",
"Exploratory Data Analysis Worksheets"
],
"data_science_advanced": [
"Advanced ML Algorithm Implementation",
"Feature Engineering Challenge Platform",
"Model Optimization Exercises",
"NLP Processing Tasks",
"Time Series Analysis Problems"
],
"ai_specialization": [
"Neural Network Implementation Exercises",
"Deep Learning Framework Challenges",
"Computer Vision Task Series",
"NLP Model Building Problems",
"AI Ethics Case Studies"
],
"generative_ai": [
"Prompt Engineering Practice Platform",
"LLM Fine-tuning Exercise Suite",
"Diffusion Model Parameter Tuning",
"Generative Model Evaluation Tasks",
"Text-to-Image Generation Challenges"
],
"agentic_ai": [
"Agent Development Exercise Platform",
"Multi-Agent System Building Tasks",
"Tool-Using AI Implementation Challenges",
"Reinforcement Learning Problems",
"Agent Communication Protocol Exercises"
]
},
"Combination": {
"python_beginner": [
"Multi-format Python Learning Platform",
"Integrated Code and Video Tutorial Project",
"Interactive Documentation System",
"Visual and Written Tutorial Combination",
"Exercise-Based Learning Environment"
],
"python_intermediate": [
"Full-Stack Python Development Course",
"Project-Based Learning Platform",
"Video and Interactive Exercise Combination",
"Visual Programming Environment",
"Code Review and Mentoring System"
],
"data_science_beginner": [
"Data Science Learning Path Platform",
"Interactive Data Analysis Environment",
"Video and Exercise-Based Statistics Course",
"Visual Data Science Notebook System",
"Hands-on Data Project Platform"
],
"data_science_advanced": [
"Advanced ML Project Portfolio",
"Interactive Research Implementation Platform",
"Video and Code-Based ML Framework",
"Visual ML Pipeline Development System",
"Experimental ML Environment"
],
"ai_specialization": [
"AI Research and Implementation Platform",
"Deep Learning Visual Learning System",
"Interactive Neural Network Builder",
"Video and Code-Based AI Framework",
"Hands-on AI Ethics Learning Environment"
],
"generative_ai": [
"Generative AI Development Platform",
"Interactive LLM Training Environment",
"Visual Prompt Engineering System",
"Model Fine-tuning Learning Path",
"Creative AI Implementation Framework"
],
"agentic_ai": [
"Agent Development Environment",
"Multi-Agent Simulation Platform",
"Interactive Tool-Using AI Builder",
"Video and Code-Based Agent Framework",
"Experimental Agent Testing System"
]
}
}
# User session data store
SESSION_DATA = {}
def save_session(session_id, data):
"""Save session data to SESSION_DATA global dictionary"""
if session_id in SESSION_DATA:
SESSION_DATA[session_id].update(data)
else:
SESSION_DATA[session_id] = data
# Add timestamp for session tracking
SESSION_DATA[session_id]["last_activity"] = datetime.now().isoformat()
def load_session(session_id):
"""Load session data from SESSION_DATA global dictionary"""
return SESSION_DATA.get(session_id, {})
def recommend_learning_path(age, goals, knowledge_level, interests):
"""Recommend personalized learning paths based on user profile"""
paths = []
# Simple recommendation logic based on profile
if "beginner" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
paths.append("python_beginner")
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
paths.append("data_science_beginner")
elif "intermediate" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
paths.append("python_intermediate")
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
paths.append("data_science_advanced")
if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
paths.append("ai_specialization")
if any(topic in interests.lower() for topic in ["generative", "gpt", "llm", "diffusion"]):
paths.append("generative_ai")
elif "advanced" in knowledge_level.lower() or "expert" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
paths.append("ai_specialization")
if any(topic in interests.lower() for topic in ["generative", "gpt", "llm", "diffusion"]):
paths.append("generative_ai")
if any(topic in interests.lower() for topic in ["agent", "autonomous", "planning"]):
paths.append("agentic_ai")
# Check for specific mentions of generative or agentic AI regardless of level
if any(topic in interests.lower() for topic in ["generative", "gpt", "llm", "diffusion"]):
if "generative_ai" not in paths:
paths.append("generative_ai")
if any(topic in interests.lower() for topic in ["agent", "autonomous", "planning"]):
if "agentic_ai" not in paths:
paths.append("agentic_ai")
# Default path if no matches
if not paths:
paths = ["python_beginner"]
return [LEARNING_PATHS[path] for path in paths if path in LEARNING_PATHS]
def get_recommended_resources(interests, knowledge_level, recommended_paths):
"""Get recommended learning resources based on interests and recommended paths"""
resources = []
# Get path IDs from recommended paths
path_ids = []
for path in recommended_paths:
path_id = next((k for k, v in LEARNING_PATHS.items() if v["title"] == path["title"]), None)
if path_id:
path_ids.append(path_id)
# Add resources for each recommended path
for path_id in path_ids:
if path_id in LEARNING_RESOURCES:
resources.extend(LEARNING_RESOURCES[path_id])
# If no specific paths match, provide resources based on interests and level
if not resources:
if "beginner" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
resources.extend(LEARNING_RESOURCES["python_beginner"])
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
resources.extend(LEARNING_RESOURCES["data_science_beginner"])
elif "intermediate" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
resources.extend(LEARNING_RESOURCES["python_intermediate"])
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
resources.extend(LEARNING_RESOURCES["data_science_advanced"])
elif "advanced" in knowledge_level.lower() or "expert" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
resources.extend(LEARNING_RESOURCES["ai_specialization"])
# If still no resources, provide general resources
if not resources:
for category in ["python_beginner", "data_science_beginner"]:
resources.extend(LEARNING_RESOURCES[category][:2])
# Remove duplicates while preserving order
unique_resources = []
seen_titles = set()
for resource in resources:
if resource["title"] not in seen_titles:
seen_titles.add(resource["title"])
unique_resources.append(resource)
return unique_resources
def get_project_ideas(recommended_paths):
"""Get project ideas based on recommended learning paths"""
ideas = []
# Get project ideas for each recommended path
for path in recommended_paths:
path_id = next((k for k, v in LEARNING_PATHS.items() if v["title"] == path["title"]), None)
if path_id and path_id in PROJECT_IDEAS:
ideas.extend(PROJECT_IDEAS[path_id])
# If no specific paths match, provide some general project ideas
if not ideas:
ideas = PROJECT_IDEAS["python_beginner"][:2] + PROJECT_IDEAS["data_science_beginner"][:2]
# Remove duplicates while preserving order
unique_ideas = []
seen_ideas = set()
for idea in ideas:
if idea not in seen_ideas:
seen_ideas.add(idea)
unique_ideas.append(idea)
return unique_ideas[:5] # Return up to 5 project ideas
def generate_quiz(topic, difficulty):
"""Generate a quiz based on the topic and difficulty"""
# In a real application, you might use the LLM to generate quizzes
# Here we're using a template approach for simplicity
quiz_prompt = f"""
Generate a {difficulty} level quiz on {topic} with 3 multiple-choice questions.
For each question, provide 4 options and indicate the correct answer.
Format the quiz nicely with clear question numbering and option lettering.
"""
# Use Groq to generate the quiz
quiz_messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": quiz_prompt}
]
quiz_response = client.chat.completions.create(
messages=quiz_messages,
model="llama-3.3-70b-versatile",
stream=False
)
return quiz_response.choices[0].message.content
def create_study_plan(topic, time_available, goals, knowledge_level):
"""Create a personalized study plan"""
plan_prompt = f"""
Create a structured study plan for learning {topic} with {time_available} hours per week available for study.
The learner's goal is: {goals}
The learner's knowledge level is: {knowledge_level}
Include:
1. Weekly breakdown of topics
2. Time allocation for theory vs practice
3. Recommended resources for each week
4. Milestone projects or assessments
5. Tips for effective learning
Make this plan specific, actionable, and tailored to the knowledge level.
"""
# Use Groq to generate the study plan
plan_messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": plan_prompt}
]
plan_response = client.chat.completions.create(
messages=plan_messages,
model="llama-3.3-70b-versatile",
stream=False
)
return plan_response.choices[0].message.content
def chat_with_groq(user_input, session_id):
"""Chat with Groq LLM using session context"""
user_data = load_session(session_id)
# Build context from session data if available
context = ""
if user_data:
context = f"""
User Profile:
- Age: {user_data.get('age', 'Unknown')}
- Knowledge Level: {user_data.get('knowledge_level', 'Unknown')}
- Learning Goals: {user_data.get('goals', 'Unknown')}
- Interests: {user_data.get('interests', 'Unknown')}
- Available Study Time: {user_data.get('study_time', 'Unknown')} hours per week
- Preferred Learning Style: {user_data.get('learning_style', 'Unknown')}
Based on this profile, tailor your response appropriately.
"""
# Add chat history context if available
chat_history = user_data.get('chat_history', [])
if chat_history:
context += "\n\nRecent conversation context (most recent first):\n"
# Include up to 3 most recent exchanges
for i, (q, a) in enumerate(reversed(chat_history[-3:])):
context += f"User: {q}\nYou: {a}\n\n"
# Combine everything for the LLM
full_prompt = f"{context}\n\nUser's current question: {user_input}"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": full_prompt}
]
chat_completion = client.chat.completions.create(
messages=messages,
model="llama-3.3-70b-versatile",
stream=False
)
response = chat_completion.choices[0].message.content
# Update chat history
if 'chat_history' not in user_data:
user_data['chat_history'] = []
user_data['chat_history'].append((user_input, response))
save_session(session_id, user_data)
return response
def format_learning_paths(paths):
"""Format learning paths for display"""
if not paths:
return "No specific learning paths recommended yet. Please complete your profile."
result = "### Recommended Learning Paths\n\n"
for i, path in enumerate(paths, 1):
result += f"{i}. {path['title']}\n"
result += f"{path['description']}\n\n"
result += "*Modules:*\n"
for module in path['modules']:
result += f"- {module}\n"
result += "\n"
return result
def format_resources(resources):
"""Format resources for display"""
if not resources:
return "No resources recommended yet. Please complete your profile."
result = "### Recommended Learning Resources\n\n"
for i, resource in enumerate(resources, 1):
result += f"{i}. [{resource['title']}]({resource['url']})\n"
return result
def format_project_ideas(ideas):
"""Format project ideas for display"""
if not ideas:
return "No project ideas recommended yet. Please complete your profile."
result = "### Recommended Practice Projects\n\n"
for i, idea in enumerate(ideas, 1):
result += f"{i}. {idea}\n"
return result
# Dictionary to store user profiles by session ID
user_profiles = {}
def user_onboarding(session_id, age, goals, knowledge_level, interests, study_time, learning_style):
"""Process user profile information and generate personalized recommendations"""
# Store user profile information
user_profiles[session_id] = {
"age": age,
"goals": goals,
"knowledge_level": knowledge_level,
"interests": interests,
"study_time": study_time,
"learning_style": learning_style,
"last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Generate initial recommendations based on profile
return generate_recommendations(session_id)
def generate_recommendations(session_id):
"""Generate personalized learning recommendations based on user profile"""
# Check if user profile exists
if session_id not in user_profiles:
return "Please complete your profile first to get personalized recommendations."
profile = user_profiles[session_id]
learning_style = profile["learning_style"]
knowledge_level = profile["knowledge_level"].lower()
# Map knowledge level to appropriate learning path
if "python" in profile["interests"].lower():
if knowledge_level == "beginner":
learning_path_key = "python_beginner"
else:
learning_path_key = "python_intermediate"
elif "data" in profile["interests"].lower():
if knowledge_level == "beginner":
learning_path_key = "data_science_beginner"
else:
learning_path_key = "data_science_advanced"
elif "ai" in profile["interests"].lower() or "artificial" in profile["interests"].lower():
if "gen" in profile["interests"].lower():
learning_path_key = "generative_ai"
elif "agent" in profile["interests"].lower():
learning_path_key = "agentic_ai"
else:
learning_path_key = "ai_specialization"
else:
# Default path
learning_path_key = "python_beginner"
# Get learning path and resources based on style and path
learning_path = LEARNING_PATHS.get(learning_path_key, LEARNING_PATHS["python_beginner"])
resources = LEARNING_RESOURCES.get(learning_style, LEARNING_RESOURCES["Combination"])
path_resources = resources.get(learning_path_key, resources["python_beginner"])
# Get project ideas
project_ideas = PROJECT_IDEAS.get(learning_style, PROJECT_IDEAS["Combination"])
path_projects = project_ideas.get(learning_path_key, project_ideas["python_beginner"])
# Build the recommendation markdown
markdown = f"## Your Personalized Learning Path: {learning_path['title']}\n\n"
markdown += f"{learning_path['description']}\n\n"
markdown += "### Learning Modules\n"
for i, module in enumerate(learning_path['modules'], 1):
markdown += f"{i}. {module}\n"
markdown += "\n### Recommended Resources\n"
for i, resource in enumerate(path_resources[:3], 1):
markdown += f"{i}. [{resource['title']}]({resource['url']})\n"
markdown += "\n### Project Ideas\n"
for i, project in enumerate(path_projects[:3], 1):
markdown += f"{i}. {project}\n"
markdown += f"\n\nRecommendations generated based on your {learning_style} learning style preference."
return markdown
def chatbot_interface(session_id, message):
"""Process user messages and generate assistant responses"""
if not message:
return "Please type a message to start the conversation."
# Build system message with context from user profile if available
system_message = SYSTEM_PROMPT
if session_id in user_profiles:
profile = user_profiles[session_id]
system_message += f"\n\nUser Profile Information:\n"
system_message += f"- Knowledge Level: {profile['knowledge_level']}\n"
system_message += f"- Learning Style: {profile['learning_style']}\n"
system_message += f"- Interests: {profile['interests']}\n"
system_message += f"- Learning Goals: {profile['goals']}\n"
# Call the Groq API
try:
chat_completion = client.chat.completions.create(
model="llama3-70b-8192", # or another appropriate model
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": message}
],
temperature=0.7,
max_tokens=2048
)
# Extract and return the response
return chat_completion.choices[0].message.content
except Exception as e:
return f"I apologize, but I encountered an error: {str(e)}\n\nPlease try again in a moment."
def handle_quiz_request(session_id, topic, difficulty):
"""Generate a quiz based on the specified topic and difficulty"""
if not topic:
return "Please specify a topic for the quiz."
# Build prompt for quiz generation
prompt = f"Create a quiz on {topic} at {difficulty} level. Include 5 questions with multiple choice answers and provide the correct answers at the end."
# Add context from user profile if available
if session_id in user_profiles:
profile = user_profiles[session_id]
prompt += f"\nThe user has a {profile['knowledge_level']} knowledge level and prefers {profile['learning_style']} learning style."
# Use chatbot interface with the quiz prompt
return chatbot_interface(session_id, prompt)
def handle_study_plan_request(session_id, topic, time_available):
"""Generate a personalized study plan based on topic and available time"""
if not topic:
return "Please specify a topic for your study plan."
# Build prompt for study plan generation
prompt = f"Create a detailed study plan for learning {topic} with {time_available} hours available per week. Include specific goals, resources, and milestones."
# Add context from user profile if available
if session_id in user_profiles:
profile = user_profiles[session_id]
prompt += f"\nThe user has a {profile['knowledge_level']} knowledge level, prefers {profile['learning_style']} learning style, and has these goals: {profile['goals']}."
# Use chatbot interface with the study plan prompt
return chatbot_interface(session_id, prompt)
def add_generative_ai_info():
"""Return information about Generative AI"""
return """
## What is Generative AI?
Generative AI refers to artificial intelligence systems that can create new content, such as text, images, code, audio, video, or 3D models. Unlike traditional AI systems that are designed to recognize patterns or make predictions, generative AI creates original outputs based on the patterns it has learned during training.
### Key Concepts in Generative AI:
- *Large Language Models (LLMs)*: Text generation systems like GPT-4, LLaMA, Claude, etc.
- *Diffusion Models*: For image generation (DALL-E, Midjourney, Stable Diffusion)
- *Prompt Engineering*: The art of crafting inputs to get desired outputs
- *Fine-tuning*: Adapting pre-trained models for specific domains or tasks
- *RLHF (Reinforcement Learning from Human Feedback)*: Method for aligning AI with human preferences
Learning generative AI involves understanding these foundation models, how they work, and how to effectively use and customize them for various applications.
"""
def add_agentic_ai_info():
"""Return information about Agentic AI"""
return """
## What is Agentic AI?
Agentic AI refers to AI systems that can act autonomously to achieve specified goals. Unlike passive AI systems that respond only when prompted, agentic AI can take initiative, make decisions, use tools, and perform sequences of actions to accomplish tasks.
### Key Concepts in Agentic AI:
- *Planning & Decision Making*: AI systems that can formulate and execute plans
- *Tool Use*: AI that can leverage external tools and APIs
- *Autonomous Execution*: Systems that can work without constant human supervision
- *Multi-agent Systems*: Multiple AI agents collaborating or competing
- *Memory & Context Management*: How agents maintain state across interactions
Agentic AI represents an evolution from AI as a passive tool to AI as an active collaborator that can work independently while remaining aligned with human goals and values.
"""
def create_chatbot():
"""Create the Gradio interface for the chatbot"""
# Generate a random session ID for the user
session_id = str(uuid.uuid4())
# Define theme colors
theme_colors = {
"light": {
"primary": "#4a6fa5",
"secondary": "#6c757d",
"success": "#28a745",
"background": "#f8f9fa",
"text": "#212529",
"card_bg": "#ffffff",
"card_border": "#dee2e6",
"input_bg": "#ffffff",
"highlight": "#e7f5fe",
"accent": "#007bff",
"completed": "#d4edda",
"info_box_bg": "#e7f5fe"
},
"dark": {
"primary": "#5b88c7", # Lighter blue for better visibility in dark mode
"secondary": "#adb5bd", # Lighter gray for better visibility
"success": "#48c774", # Brighter green for dark mode
"background": "#1a1a1a", # Dark background
"text": "#f1f1f1", # Light text for dark backgrounds
"card_bg": "#2d2d2d", # Dark card background
"card_border": "#444444", # Dark border
"input_bg": "#333333", # Dark input background
"highlight": "#193652", # Dark highlight
"accent": "#3291ff", # Bright accent
"completed": "#204829", # Dark green for completed
"info_box_bg": "#193652" # Dark info box
}
}
# Create CSS with theme variables
custom_css = """
/* Theme variables - will be applied based on user's theme preference */
.light-theme {
--primary-color: #4a6fa5;
--secondary-color: #6c757d;
--success-color: #28a745;
--bg-color: #f8f9fa;
--text-color: #212529;
--card-bg: #ffffff;
--card-border: #dee2e6;
--input-bg: #ffffff;
--highlight-color: #e7f5fe;
--accent-color: #007bff;
--completed-color: #d4edda;
--info-box-bg: #e7f5fe;
}
.dark-theme {
--primary-color: #5b88c7;
--secondary-color: #adb5bd;
--success-color: #48c774;
--bg-color: #1a1a1a;
--text-color: #f1f1f1;
--card-bg: #2d2d2d;
--card-border: #444444;
--input-bg: #333333;
--highlight-color: #193652;
--accent-color: #3291ff;
--completed-color: #204829;
--info-box-bg: #193652;
}
/* Automatically detect theme preference and apply appropriate theme class */
@media (prefers-color-scheme: dark) {
body {
color-scheme: dark;
}
body:not(.light-theme):not(.force-light) {
background-color: var(--bg-color);
color: var(--text-color);
}
}
@media (prefers-color-scheme: light) {
body {
color-scheme: light;
}
body:not(.dark-theme):not(.force-dark) {
background-color: var(--bg-color);
color: var(--text-color);
}
}
/* Apply theme variables to elements */
.gradio-container {
background-color: var(--bg-color) !important;
color: var(--text-color) !important;
font-family: 'Inter', 'Segoe UI', sans-serif;
}
/* Style overrides for Gradio components to respect theme */
.gr-box, .gr-panel {
background-color: var(--card-bg) !important;
border-color: var(--card-border) !important;
color: var(--text-color) !important;
}
.gr-input, .gr-dropdown {
background-color: var(--input-bg) !important;
color: var(--text-color) !important;
border-color: var(--card-border) !important;
}
.gr-input:focus, .gr-dropdown:focus {
border-color: var(--accent-color) !important;
}
.gr-input::placeholder {
color: var(--secondary-color) !important;
opacity: 0.7;
}
/* App specific styling */
#title {
font-size: 32px;
font-weight: bold;
text-align: center;
padding-top: 20px;
color: var(--primary-color) !important;
margin-bottom: 0;
}
#subtitle {
font-size: 18px;
text-align: center;
margin-bottom: 20px;
color: var(--secondary-color) !important;
}
.card {
background-color: var(--card-bg) !important;
color: var(--text-color) !important;
padding: 20px;
border-radius: 12px;
border: 1px solid var(--card-border);
box-shadow: 0 4px 10px rgba(0,0,0,0.08);
margin-bottom: 20px;
}
/* Fix markdown text color for both themes */
.prose {
color: var(--text-color) !important;
}
/* Ensure markdown headings are visible in both themes */
.prose h1, .prose h2, .prose h3, .prose h4, .prose h5, .prose h6 {
color: var(--primary-color) !important;
font-weight: 600;
}
/* Make links visible in both themes */
.prose a {
color: var(--accent-color) !important;
text-decoration: underline;
}
/* Fix button colors */
.gr-button-primary {
background-color: var(--primary-color) !important;
color: #ffffff !important;
}
.gr-button-secondary {
background-color: var(--secondary-color) !important;
color: #ffffff !important;
}
.gr-button-success {
background-color: var(--success-color) !important;
color: #ffffff !important;
}
/* Footer styling */
.footer {
text-align: center;
margin-top: 30px;
padding: 10px;
font-size: 14px;
color: var(--secondary-color) !important;
}
/* Progress modules */
.progress-module {
padding: 10px;
margin: 5px 0;
border-radius: 5px;
background-color: var(--highlight-color);
color: var(--text-color);
}
.progress-module.completed {
background-color: var(--completed-color);
}
/* Info box styling */
.info-box {
background-color: var(--info-box-bg);
border-left: 4px solid var(--primary-color);
padding: 15px;
margin: 15px 0;
border-radius: 4px;
color: var(--text-color);
}
/* Tab styling improvements */
.tabs button {
color: var(--text-color) !important;
}
.tabs button[data-selected="true"] {
color: var(--primary-color) !important;
border-color: var(--primary-color) !important;
}
/* Add theme detection script */
.theme-script {
display: none;
}
"""
# JavaScript to detect and apply theme
theme_script = """
<script>
// Function to detect and apply theme
function applyTheme() {
// Check if user has a saved preference
const savedTheme = localStorage.getItem('preferredTheme');
if (savedTheme) {
// Apply saved preference
document.body.classList.add(savedTheme + '-theme');
} else {
// Check system preference
if (window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches) {
document.body.classList.add('dark-theme');
} else {
document.body.classList.add('light-theme');
}
}
// Listen for theme changes
window.matchMedia('(prefers-color-scheme: dark)').addEventListener('change', event => {
// Only apply if no saved preference
if (!savedTheme) {
document.body.classList.remove('light-theme', 'dark-theme');
document.body.classList.add(event.matches ? 'dark-theme' : 'light-theme');
}
});
}
// Apply theme when DOM is loaded
document.addEventListener('DOMContentLoaded', applyTheme);
// For Gradio that might load content dynamically
if (document.readyState === 'complete' || document.readyState === 'interactive') {
setTimeout(applyTheme, 1);
}
</script>
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue")) as demo:
gr.HTML("<div id='title'>🎓 AI Teaching Assistant</div>")
gr.HTML("<div id='subtitle'>Your personalized learning companion for Python, Data Science & AI</div>")
gr.HTML(theme_script, elem_classes=["theme-script"])
# Tabs for different sections
with gr.Tabs(elem_classes=["tabs"]) as tabs:
# Profile Tab
with gr.Tab("Profile & Goals"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Complete Your Learning Profile</h3>")
with gr.Row():
with gr.Column(scale=1):
age_input = gr.Textbox(
label="Age",
placeholder="e.g. 20",
lines=1
)
with gr.Column(scale=2):
knowledge_level_input = gr.Dropdown(
choices=["Beginner", "Intermediate", "Advanced", "Expert"],
label="Knowledge Level",
value="Beginner"
)
goals_input = gr.Textbox(
label="Learning Goals",
placeholder="e.g. I want to become a data scientist and work with machine learning models",
lines=2
)
interests_input = gr.Textbox(
label="Specific Interests",
placeholder="e.g. Python, data visualization, neural networks",
lines=2
)
with gr.Row():
with gr.Column(scale=1):
study_time_input = gr.Dropdown(
choices=["1-3", "4-6", "7-10", "10+"],
label="Hours Available Weekly",
value="4-6"
)
with gr.Column(scale=2):
learning_style_input = gr.Dropdown(
choices=["Visual", "Reading/Writing", "Hands-on Projects", "Video Tutorials", "Interactive Exercises", "Combination"],
label="Preferred Learning Style",
value="Combination"
)
profile_submit_btn = gr.Button("Save Profile & Generate Recommendations", variant="primary")
profile_output = gr.Markdown(label="Personalized Recommendations")
# Chat Tab
with gr.Tab("Learning Assistant"):
with gr.Row():
with gr.Column(elem_classes=["card"]):
chat_input = gr.Textbox(
label="Ask a Question",
placeholder="Ask anything about Python, Data Science, AI...",
lines=3
)
with gr.Row():
chat_submit_btn = gr.Button("Send Message", variant="primary")
chat_clear_btn = gr.Button("Clear Chat", variant="secondary")
chat_output = gr.Markdown(label="Assistant Response")
# Resources Tab
with gr.Tab("Resources & Recommendations"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Your Learning Resources</h3>")
refresh_recommendations_btn = gr.Button("Refresh Recommendations", variant="primary")
recommendations_output = gr.Markdown(label="Personalized Recommendations")
# Practice Tab
with gr.Tab("Practice & Assessment"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Generate a Quiz</h3>")
with gr.Row():
quiz_topic_input = gr.Textbox(
label="Quiz Topic",
placeholder="e.g. Python Lists",
lines=1
)
quiz_difficulty_input = gr.Dropdown(
choices=["Beginner", "Intermediate", "Advanced"],
label="Difficulty Level",
value="Beginner"
)
generate_quiz_btn = gr.Button("Generate Quiz", variant="primary")
quiz_output = gr.Markdown(label="Quiz")
# Study Plan Tab
with gr.Tab("Study Plan"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Generate a Personalized Study Plan</h3>")
with gr.Row():
plan_topic_input = gr.Textbox(
label="Study Topic",
placeholder="e.g. Data Science",
lines=1
)
plan_time_input = gr.Dropdown(
choices=["1-3", "4-6", "7-10", "10+"],
label="Hours Available Weekly",
value="4-6"
)
generate_plan_btn = gr.Button("Generate Study Plan", variant="primary")
plan_output = gr.Markdown(label="Personalized Study Plan")
gr.HTML("""<div class="footer">
AI Teaching Assistant | Powered by Groq AI |Created by Maria Nadeem
</div>""")
# Event handlers
profile_submit_btn.click(
user_onboarding,
inputs=[
gr.State(session_id),
age_input,
goals_input,
knowledge_level_input,
interests_input,
study_time_input,
learning_style_input
],
outputs=profile_output
)
chat_submit_btn.click(
chatbot_interface,
inputs=[gr.State(session_id), chat_input],
outputs=chat_output
)
chat_clear_btn.click(
lambda: "",
inputs=[],
outputs=[chat_output, chat_input]
)
refresh_recommendations_btn.click(
generate_recommendations,
inputs=[gr.State(session_id)],
outputs=recommendations_output
)
generate_quiz_btn.click(
handle_quiz_request,
inputs=[gr.State(session_id), quiz_topic_input, quiz_difficulty_input],
outputs=quiz_output
)
generate_plan_btn.click(
handle_study_plan_request,
inputs=[gr.State(session_id), plan_topic_input, plan_time_input],
outputs=plan_output
)
return demo
if __name__ == "__main__":
app = create_chatbot()
app.launch() |