Spaces:
Build error
Build error
#data_handler_ocr.py | |
import pandas as pd | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms | |
import os | |
from PIL import Image | |
import numpy as np | |
import torch.nn.functional as F | |
# Import utility functions and config | |
from config import ( | |
VOCABULARY, BLANK_TOKEN, BLANK_TOKEN_SYMBOL, IMG_HEIGHT, | |
TRAIN_IMAGES_DIR, TEST_IMAGES_DIR, | |
TRAIN_SAMPLES_LIMIT, TEST_SAMPLES_LIMIT | |
) | |
from utils_ocr import load_image_as_grayscale, binarize_image, resize_image_for_ocr, normalize_image_for_model | |
class CharIndexer: | |
"""Manages character-to-index and index-to-character mappings.""" | |
def __init__(self, vocabulary_string: str, blank_token_symbol: str): | |
self.chars = sorted(list(set(vocabulary_string))) | |
self.char_to_idx = {char: i for i, char in enumerate(self.chars)} | |
self.idx_to_char = {i: char for i, char in enumerate(self.chars)} | |
if blank_token_symbol not in self.char_to_idx: | |
raise ValueError(f"Blank token symbol '{blank_token_symbol}' not found in provided vocabulary string: '{vocabulary_string}'") | |
self.blank_token_idx = self.char_to_idx[blank_token_symbol] | |
self.num_classes = len(self.chars) | |
if self.blank_token_idx >= self.num_classes: | |
raise ValueError(f"Blank token index ({self.blank_token_idx}) is out of range for num_classes ({self.num_classes}). This indicates a configuration mismatch.") | |
print(f"CharIndexer initialized: num_classes={self.num_classes}, blank_token_idx={self.blank_token_idx}") | |
print(f"Mapped blank symbol: '{self.idx_to_char[self.blank_token_idx]}'") | |
def encode(self, text: str) -> list[int]: | |
"""Converts a text string to a list of integer indices.""" | |
encoded_list = [] | |
for char in text: | |
if char in self.char_to_idx: | |
encoded_list.append(self.char_to_idx[char]) | |
else: | |
print(f"Warning: Character '{char}' not found in CharIndexer vocabulary. Mapping to blank token.") | |
encoded_list.append(self.blank_token_idx) | |
return encoded_list | |
def decode(self, indices: list[int]) -> str: | |
"""Converts a list of integer indices back to a text string.""" | |
decoded_text = [] | |
for i, idx in enumerate(indices): | |
if idx == self.blank_token_idx: | |
continue # Skip blank tokens | |
if i > 0 and indices[i-1] == idx: | |
continue | |
if idx in self.idx_to_char: | |
decoded_text.append(self.idx_to_char[idx]) | |
else: | |
print(f"Warning: Index {idx} not found in CharIndexer's idx_to_char mapping during decoding.") | |
return "".join(decoded_text) | |
class OCRDataset(Dataset): | |
""" | |
Custom PyTorch Dataset for the Handwritten Name Recognition task. | |
Loads images and their corresponding text labels. | |
""" | |
def __init__(self, dataframe: pd.DataFrame, char_indexer: CharIndexer, image_dir: str, transform=None): | |
self.data = dataframe | |
self.char_indexer = char_indexer | |
self.image_dir = image_dir | |
if transform is None: | |
self.transform = transforms.Compose([ | |
transforms.Lambda(lambda img: binarize_image(img)), | |
transforms.Lambda(lambda img: resize_image_for_ocr(img, IMG_HEIGHT)), # Resize image to fixed height | |
transforms.ToTensor(), # Convert PIL Image to PyTorch Tensor (H, W) -> (1, H, W), scales to [0,1] | |
transforms.Lambda(normalize_image_for_model) # Normalize pixel values to [-1, 1] | |
]) | |
else: | |
self.transform = transform | |
def __len__(self) -> int: | |
return len(self.data) | |
def __getitem__(self, idx): | |
raw_filename_entry = self.data.loc[idx, 'FILENAME'] | |
ground_truth_text = self.data.loc[idx, 'IDENTITY'] | |
filename = raw_filename_entry.split(',')[0].strip() | |
img_path = os.path.join(self.image_dir, filename) | |
ground_truth_text = str(ground_truth_text) | |
try: | |
image = load_image_as_grayscale(img_path) # Returns PIL Image 'L' | |
except FileNotFoundError: | |
print(f"Error: Image file not found at {img_path}. Skipping this item.") | |
raise | |
if self.transform: | |
image = self.transform(image) | |
image_width = image.shape[2] # Assuming image is (C, H, W) after transform | |
text_encoded = torch.tensor(self.char_indexer.encode(ground_truth_text), dtype=torch.long) | |
text_length = len(text_encoded) | |
return image, text_encoded, image_width, text_length | |
def ocr_collate_fn(batch: list) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Custom collate function for the DataLoader to handle variable-width images | |
and variable-length text sequences for CTC loss. | |
""" | |
images, texts, image_widths, text_lengths = zip(*batch) | |
max_batch_width = max(image_widths) | |
padded_images = [F.pad(img, (0, max_batch_width - img.shape[2]), 'constant', 0) for img in images] | |
images_batch = torch.stack(padded_images, 0) | |
texts_batch = torch.cat(texts, 0) | |
text_lengths_tensor = torch.tensor(list(text_lengths), dtype=torch.long) | |
image_widths_tensor = torch.tensor(image_widths, dtype=torch.long) | |
return images_batch, texts_batch, image_widths_tensor, text_lengths_tensor | |
def load_ocr_dataframes(train_csv_path: str, test_csv_path: str) -> tuple[pd.DataFrame, pd.DataFrame]: | |
""" | |
Loads training and testing dataframes. | |
Assumes CSVs have 'FILENAME' and 'IDENTITY' columns. | |
Applies dataset limits from config.py. | |
""" | |
train_df = pd.read_csv(train_csv_path, encoding='ISO-8859-1') | |
test_df = pd.read_csv(test_csv_path, encoding='ISO-8859-1') | |
# Apply limits if they are set (not 0) | |
if TRAIN_SAMPLES_LIMIT > 0: | |
train_df = train_df.head(TRAIN_SAMPLES_LIMIT) | |
print(f"Limited training data to {TRAIN_SAMPLES_LIMIT} samples.") | |
if TEST_SAMPLES_LIMIT > 0: | |
test_df = test_df.head(TEST_SAMPLES_LIMIT) | |
print(f"Limited test data to {TEST_SAMPLES_LIMIT} samples.") | |
return train_df, test_df | |
def create_ocr_dataloaders(train_df: pd.DataFrame, test_df: pd.DataFrame, | |
char_indexer: CharIndexer, batch_size: int) -> tuple[DataLoader, DataLoader]: | |
""" | |
Creates PyTorch DataLoader objects for OCR training and testing datasets, | |
using specific image directories for train/test. | |
""" | |
train_dataset = OCRDataset(train_df, char_indexer, TRAIN_IMAGES_DIR) | |
test_dataset = OCRDataset(test_df, char_indexer, TEST_IMAGES_DIR) | |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, | |
num_workers=0, collate_fn=ocr_collate_fn) | |
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, | |
num_workers=0, collate_fn=ocr_collate_fn) | |
return train_loader, test_loader | |