martynattakit's picture
Update app.py
a0046fe verified
raw
history blame
5.64 kB
import torch
from transformers import RobertaTokenizer, RobertaModel
from huggingface_hub import hf_hub_download # <--- NEW IMPORT
import numpy as np
from scipy.special import softmax
import gradio as gr
import re
import os # <--- NEW IMPORT
# Define the model class with dimension reduction
class CodeClassifier(torch.nn.Module):
def __init__(self, base_model, num_labels=6):
super(CodeClassifier, self).__init__()
self.base = base_model # This will be the microsoft/codebert-base model
self.reduction = torch.nn.Linear(768, 512)
self.classifier = torch.nn.Linear(512, num_labels)
def forward(self, input_ids, attention_mask):
outputs = self.base(input_ids=input_ids, attention_mask=attention_mask)
reduced = self.reduction(outputs.pooler_output)
return self.classifier(reduced)
# --- START OF MODIFIED LOADING LOGIC ---
# Hugging Face Model ID where your .pt file is located
HF_MODEL_REPO_ID = 'martynattakit/CodeSentinel-Model'
# The exact filename of your .pt file in that repository
HF_MODEL_FILENAME = 'best_model.pt' # <--- CONFIRM THIS IS THE EXACT FILENAME YOU UPLOADED
# Load the base tokenizer (from Hugging Face Hub as before)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
# Initialize the base CodeBERT model from Hugging Face (standard download)
base_codebert_model = RobertaModel.from_pretrained('microsoft/codebert-base')
# Instantiate your custom CodeClassifier model
model = CodeClassifier(base_codebert_model, num_labels=6)
# Download the .pt file from Hugging Face Hub
print(f"Attempting to download {HF_MODEL_FILENAME} from {HF_MODEL_REPO_ID}...")
try:
# hf_hub_download will download the file and return its local path (which might be in cache)
downloaded_model_path = hf_hub_download(
repo_id=HF_MODEL_REPO_ID,
filename=HF_MODEL_FILENAME,
# If your model repo is private, you might need to ensure
# that huggingface-cli login has been run in your environment.
)
print(f"Model downloaded to: {downloaded_model_path}")
# Load the state dictionary from the downloaded .pt file
state_dict = torch.load(downloaded_model_path, map_location=device)
# Handle 'module.' prefix if the model was saved with DataParallel
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
new_state_dict[k[7:]] = v # remove 'module.' prefix
else:
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
print(f"Successfully loaded model state into CodeClassifier.")
except Exception as e:
print(f"Error during model download or loading: {e}")
print("Please ensure:")
print(f"1. The repository '{HF_MODEL_REPO_ID}' exists and is public (or you're logged in with `huggingface-cli login`).")
print(f"2. The file '{HF_MODEL_FILENAME}' exists within that repository on Hugging Face and is spelled exactly correctly.")
# Exiting here is good for deployment environments like Hugging Face Spaces,
# as it makes the error clear early on.
exit()
# --- END OF MODIFIED LOADING LOGIC ---
print("Loaded state dict keys (after loading .pt):", model.state_dict().keys())
print("Classifier weight shape (after loading .pt):", model.classifier.weight.shape)
model.eval()
model.to(device)
# Label mapping with descriptions
label_map = {
0: ('none', 'No Vulnerability Detected'),
1: ('cwe-121', 'Stack-based Buffer Overflow'),
2: ('cwe-78', 'OS Command Injection'),
3: ('cwe-190', 'Integer Overflow or Wraparound'),
4: ('cwe-191', 'Integer Underflow'),
5: ('cwe-122', 'Heap-based Buffer Overflow')
}
def load_c_file(file):
try:
if file is None:
return ""
with open(file.name, 'r', encoding='utf-8') as f:
content = f.read()
return content
except Exception as e:
return f"Error reading file: {str(e)}"
def clean_code(code):
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
code = re.sub(r'//.*$', '', code, flags=re.MULTILINE)
code = ' '.join(code.split())
return code
def evaluate_code(code):
try:
if len(code) >= 1500000:
return "Code too large"
cleaned_code = clean_code(code)
inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
print("Input shape:", inputs['input_ids'].shape)
with torch.no_grad():
outputs = model(**inputs)
print("Raw logits:", outputs.cpu().numpy())
probs = softmax(outputs.cpu().numpy(), axis=1)
pred = np.argmax(probs, axis=1)[0]
cwe, description = label_map[pred]
return f"{cwe} {description}"
except Exception as e:
return f"Error during prediction: {str(e)}"
with gr.Blocks() as web:
with gr.Row():
with gr.Column(scale=1):
code_box = gr.Textbox(lines=20, label="** C/C++ Code", placeholder="Paste your C or C++ code here...")
with gr.Column(scale=1):
cc_file = gr.File(label="Upload C/C++ File (.c or .cpp)", file_types=[".c", ".cpp"])
check_btn = gr.Button("Check")
with gr.Row():
gr.Markdown("### Result:")
with gr.Row():
with gr.Column(scale=1):
label_box = gr.Textbox(label="Vulnerability", interactive=False)
cc_file.change(fn=load_c_file, inputs=cc_file, outputs=code_box)
check_btn.click(fn=evaluate_code, inputs=code_box, outputs=[label_box])
web.launch()