File size: 8,326 Bytes
f91ccef
2699d0b
 
 
 
 
 
 
60c8a15
 
2699d0b
 
e992967
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91ccef
60c8a15
021a9d3
 
60c8a15
 
 
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cd752
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d8bee
19cd752
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import time
import threading
import streamlit as st
from twilio.rest import Client
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer

import faiss
import numpy as np
import docx

from groq import Groq
import requests
from io import StringIO
from pdfminer.high_level import extract_text_to_fp
from pdfminer.layout import LAParams

# --- PDF Extraction (Improved for Tables & Paragraphs) ---
def extract_text_from_pdf(pdf_path):
    output_string = StringIO()
    with open(pdf_path, 'rb') as file:
        extract_text_to_fp(file, output_string, laparams=LAParams(), output_type='text', codec=None)
    return output_string.getvalue()

def clean_extracted_text(text):
    lines = text.splitlines()
    cleaned = []
    for line in lines:
        line = line.strip()
        if line:
            line = ' '.join(line.split())  # remove extra spaces
            cleaned.append(line)
    return '\n'.join(cleaned)

# --- DOCX Extraction ---
def extract_text_from_docx(docx_path):
    try:
        doc = docx.Document(docx_path)
        return '\n'.join(para.text for para in doc.paragraphs)
    except:
        return ""

# --- Chunking & Retrieval ---
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):


    tokens = tokenizer.tokenize(text)
    chunks = []
    start = 0
        start += chunk_size - chunk_overlap
    return chunks

def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
    question_embedding = embed_model.encode(question)
    D, I = index.search(np.array([question_embedding]), k)
    return [text_chunks[i] for i in I[0]]

# --- Groq Answer Generator ---
def generate_answer_with_groq(question, context):
    url = "https://api.groq.com/openai/v1/chat/completions"
    api_key = os.environ.get("GROQ_API_KEY")
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }
    prompt = (
        f"Customer asked: '{question}'\n\n"
        f"Here is the relevant product or policy info to help:\n{context}\n\n"
        f"Respond in a friendly and helpful tone as a toy shop support agent."
    )
    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
                "role": "system",
                "content": (
                    "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
                    "Your goal is to politely answer customer questions, help them choose the right toys, "
                    "provide order or delivery information, explain return policies, and guide them through purchases."
                )
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.5,
        "max_tokens": 300,
    }
    response = requests.post(url, headers=headers, json=payload)
    response.raise_for_status()
    return response.json()['choices'][0]['message']['content'].strip()

# --- Twilio Functions ---
def get_whatsapp_conversation_sids(client):
    sids = []
    conversations = client.conversations.v1.conversations.list(limit=50)
    for convo in conversations:
        try:
            participants = client.conversations.v1.conversations(convo.sid).participants.list()
            for p in participants:
                if (p.identity and p.identity.startswith("whatsapp:")) or (
                    p.messaging_binding and p.messaging_binding.get("address", "").startswith("whatsapp:")
                ):
                    sids.append(convo.sid)
                    break
        except:
            continue
    return sids

def fetch_latest_incoming_message(client, conversation_sid):
    messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
    for msg in reversed(messages):
        if msg.author.startswith("whatsapp:"):
            return {
                "sid": msg.sid,
                "body": msg.body,
                "author": msg.author,
                "timestamp": msg.date_created,
            }
    return None

def send_twilio_message(client, conversation_sid, body):
    return client.conversations.v1.conversations(conversation_sid).messages.create(
        author="system", body=body
    )

# --- Load Knowledge Base ---
def setup_knowledge_base():
    folder_path = "docs"
    all_text = ""
    for file in os.listdir(folder_path):
        path = os.path.join(folder_path, file)
        if file.endswith(".pdf"):
            raw_text = extract_text_from_pdf(path)
            all_text += clean_extracted_text(raw_text) + "\n"
        elif file.endswith((".docx", ".doc")):
            all_text += extract_text_from_docx(path) + "\n"

    tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
    chunks = chunk_text(all_text, tokenizer)
    model = SentenceTransformer('all-mpnet-base-v2')
    embeddings = model.encode(chunks, truncate=True, show_progress_bar=False)
    dim = embeddings[0].shape[0]
    index = faiss.IndexFlatL2(dim)
    index.add(np.array(embeddings).astype('float32'))
    return index, model, chunks

# --- Monitor Conversations ---
def start_conversation_monitor(client, index, embed_model, text_chunks):
    monitored_sids = set()

    def poll_conversation(convo_sid):
        last_processed_timestamp = None
        while True:
            try:
                latest_msg = fetch_latest_incoming_message(client, convo_sid)
                if latest_msg:
                    msg_time = latest_msg["timestamp"]
                    if last_processed_timestamp is None or msg_time > last_processed_timestamp:
                        last_processed_timestamp = msg_time
                        question = latest_msg["body"]
                        sender = latest_msg["author"]
                        print(f"\nπŸ“₯ New message from {sender} in {convo_sid}: {question}")
                        context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
                        answer = generate_answer_with_groq(question, context)
                        send_twilio_message(client, convo_sid, answer)
                        print(f"πŸ“€ Replied to {sender}: {answer}")
                time.sleep(3)
            except Exception as e:
                print(f"❌ Error in convo {convo_sid} polling:", e)
                time.sleep(5)

    def monitor_all_conversations():
        while True:
            try:
                current_sids = set(get_whatsapp_conversation_sids(client))
                new_sids = current_sids - monitored_sids
                for sid in new_sids:
                    print(f"➑️ Monitoring new conversation: {sid}")
                    monitored_sids.add(sid)
                    threading.Thread(target=poll_conversation, args=(sid,), daemon=True).start()
                time.sleep(15)
            except Exception as e:
                print("❌ Error in conversation monitoring loop:", e)
                time.sleep(15)

    threading.Thread(target=monitor_all_conversations, daemon=True).start()

# --- Streamlit UI ---
st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")

account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")

if not all([account_sid, auth_token, GROQ_API_KEY]):
    st.warning("⚠️ Provide all credentials below:")
    account_sid = st.text_input("Twilio SID", value=account_sid or "")
    auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
    GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")

if all([account_sid, auth_token, GROQ_API_KEY]):
    os.environ["GROQ_API_KEY"] = GROQ_API_KEY
    client = Client(account_sid, auth_token)
    conversation_sids = get_whatsapp_conversation_sids(client)

    if conversation_sids:
        st.success(f"βœ… {len(conversation_sids)} WhatsApp conversation(s) found. Initializing chatbot...")
        index, model, chunks = setup_knowledge_base()
        start_conversation_monitor(client, index, model, chunks)
        st.success("🟒 Chatbot is running in background and will reply to new messages.")
    else:
        st.error("❌ No WhatsApp conversations found.")