File size: 10,013 Bytes
f91ccef
2699d0b
 
 
 
 
 
60c8a15
 
2699d0b
e992967
2699d0b
 
 
 
71f4ee8
7be2761
078698e
 
8b78680
078698e
8b78680
88b9878
7be2761
2699d0b
7be2761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699d0b
 
 
 
 
 
 
88b9878
2699d0b
 
 
7be2761
 
 
 
 
 
 
 
2699d0b
 
 
 
 
7be2761
2699d0b
 
88b9878
2699d0b
60c8a15
021a9d3
 
aaea35e
 
 
 
 
 
 
60c8a15
 
 
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cd752
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc3b90
b594dbc
71f4ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
7be2761
53c30e7
71f4ee8
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b78680
2699d0b
 
 
 
 
 
88b9878
 
 
 
 
 
 
0b29458
 
 
 
 
 
 
 
 
 
 
 
 
88b9878
0b29458
 
6c85feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b29458
6c85feb
 
0b29458
 
 
6c85feb
2699d0b
19cd752
2699d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465fc05
88b9878
 
 
078698e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import time
import threading
import streamlit as st
from twilio.rest import Client
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import requests
from io import StringIO
from pdfminer.high_level import extract_text_to_fp
from pdfminer.layout import LAParams
from twilio.base.exceptions import TwilioRestException  # Add this at the top
import pdfplumber
import datetime

APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)

os.environ["PYTORCH_JIT"] = "0"
# --- PDF Extraction ---
# --- PDF Extraction ---
def extract_text_from_pdf(pdf_path):
    text_output = StringIO()
    tables = []
    try:
        with pdfplumber.open(pdf_path) as pdf:
            for page in pdf.pages:
                # Extract tables
                page_tables = page.extract_tables()
                if page_tables:
                    tables.extend(page_tables)
                # Extract text
                text = page.extract_text()
                if text:
                    text_output.write(text + "\n\n")
    except Exception as e:
        print(f"Error extracting with pdfplumber: {e}")
        # Fallback to pdfminer if pdfplumber fails
        with open(pdf_path, 'rb') as file:
            extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
    extracted_text = text_output.getvalue()
    formatted_tables = _format_tables_internal(tables)
    return f"{extracted_text}\n\n{formatted_tables}"

def clean_extracted_text(text):
    lines = text.splitlines()
    cleaned = []
    for line in lines:
        line = line.strip()
        if line:
            line = ' '.join(line.split())
            cleaned.append(line)
    return '\n'.join(cleaned)

def _format_tables_internal(tables):
    formatted_tables = []
    for table in tables:
        # Basic formatting: joining rows with '|' and cells with ','
        formatted_table = "\n".join(["|".join(row) for row in table])
        formatted_tables.append(f"<table data>\n{formatted_table}\n</table>")
    return "\n\n".join(formatted_tables)

# --- DOCX Extraction ---
def extract_text_from_docx(docx_path):
    try:
        doc = docx.Document(docx_path)
        return '\n'.join(para.text for para in doc.paragraphs)
    except Exception:
        return ""

# --- Chunking ---
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
    tokens = tokenizer.tokenize(text)
    chunks = []
    start = 0
    while start < len(tokens):
        end = min(start + chunk_size, len(tokens))
        chunk_tokens = tokens[start:end]
        chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
        chunks.append(chunk_text)
        if end == len(tokens):
            break
        start += chunk_size - chunk_overlap
    return chunks

def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
    question_embedding = embed_model.encode(question)
    D, I = index.search(np.array([question_embedding]), k)
    return [text_chunks[i] for i in I[0]]

# --- Groq Answer Generator ---
def generate_answer_with_groq(question, context):
    url = "https://api.groq.com/openai/v1/chat/completions"
    api_key = os.environ.get("GROQ_API_KEY")
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }
    prompt = (
        f"Customer asked: '{question}'\n\n"
        f"Here is the relevant product or policy info to help:\n{context}\n\n"
        f"Respond in a friendly and helpful tone as a toy shop support agent."
    )
    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
                "role": "system",
                "content": (
                    "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
                    "Your goal is to politely answer customer questions, help them choose the right toys, "
                    "provide order or delivery information, explain return policies, and guide them through purchases."
                )
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.5,
        "max_tokens": 300,
    }
    response = requests.post(url, headers=headers, json=payload)
    response.raise_for_status()
    return response.json()['choices'][0]['message']['content'].strip()

# --- Twilio Functions ---
def fetch_latest_incoming_message(client, conversation_sid):
    try:
        messages = client.conversations.v1.conversations(conversation_sid).messages.list()
        for msg in reversed(messages):
            if msg.author.startswith("whatsapp:"):
                return {
                    "sid": msg.sid,
                    "body": msg.body,
                    "author": msg.author,
                    "timestamp": msg.date_created,
                }
    except TwilioRestException as e:
        if e.status == 404:
            print(f"Conversation {conversation_sid} not found, skipping...")
        else:
            print(f"Twilio error fetching messages for {conversation_sid}:", e)
    except Exception as e:
        #print(f"Unexpected error in fetch_latest_incoming_message for {conversation_sid}:", e)
        pass

    return None

def send_twilio_message(client, conversation_sid, body):
    return client.conversations.v1.conversations(conversation_sid).messages.create(
        author="system", body=body
    )

# --- Load Knowledge Base ---
def setup_knowledge_base():
    folder_path = "docs"
    all_text = ""
    for file in os.listdir(folder_path):
        path = os.path.join(folder_path, file)
        if file.endswith(".pdf"):
            raw_text = extract_text_from_pdf(path)
            all_text += clean_extracted_text(raw_text) + "\n"
        elif file.endswith((".docx", ".doc")):
            all_text += extract_text_from_docx(path) + "\n"

    tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
    chunks = chunk_text(all_text, tokenizer)
    model = SentenceTransformer('all-mpnet-base-v2')
    embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
    dim = embeddings[0].shape[0]
    index = faiss.IndexFlatL2(dim)
    index.add(np.array(embeddings).astype('float32'))
    return index, model, chunks

# --- Monitor Conversations ---
def start_conversation_monitor(client, index, embed_model, text_chunks):
    processed_convos = set()
    last_processed_timestamp = {}

    def poll_conversation(convo_sid):
        while True:
            try:
                latest_msg = fetch_latest_incoming_message(client, convo_sid)
                if latest_msg:
                    msg_time = latest_msg["timestamp"]
                    if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
                        last_processed_timestamp[convo_sid] = msg_time
                        question = latest_msg["body"]
                        sender = latest_msg["author"]
                        print(f"\nπŸ“₯ New message from {sender} in {convo_sid}: {question}")
                        context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
                        answer = generate_answer_with_groq(question, context)
                        send_twilio_message(client, convo_sid, answer)
                        print(f"πŸ“€ Replied to {sender}: {answer}")
                time.sleep(3)
            except Exception as e:
                print(f"❌ Error in convo {convo_sid} polling:", e)
                time.sleep(5)

    def poll_new_conversations():
        print("➑️ Monitoring for new WhatsApp conversations...")
        while True:
            try:
                conversations = client.conversations.v1.conversations.list(limit=20)
                for convo in conversations:
                    convo_full = client.conversations.v1.conversations(convo.sid).fetch()
                    if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
                        participants = client.conversations.v1.conversations(convo.sid).participants.list()
                        for p in participants:
                            address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
                            if address.startswith("whatsapp:"):
                                print(f"πŸ†• New WhatsApp convo found: {convo.sid}")
                                processed_convos.add(convo.sid)
                                threading.Thread(target=poll_conversation, args=(convo.sid,), daemon=True).start()
            except Exception as e:
                print("❌ Error polling conversations:", e)
            time.sleep(5)

    # βœ… Launch conversation polling monitor
    threading.Thread(target=poll_new_conversations, daemon=True).start()



# --- Streamlit UI ---
st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")

account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")

if not all([account_sid, auth_token, GROQ_API_KEY]):
    st.warning("⚠️ Provide all credentials below:")
    account_sid = st.text_input("Twilio SID", value=account_sid or "")
    auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
    GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")

if all([account_sid, auth_token, GROQ_API_KEY]):
    os.environ["GROQ_API_KEY"] = GROQ_API_KEY
    client = Client(account_sid, auth_token)

    st.success("🟒 Monitoring new WhatsApp conversations...")
    index, model, chunks = setup_knowledge_base()
    threading.Thread(target=start_conversation_monitor, args=(client, index, model, chunks), daemon=True).start()
    st.info("⏳ Waiting for new messages...")