Quasa / app.py
masadonline's picture
Update app.py
19cd752 verified
raw
history blame
7.07 kB
# app.py
import os
import time
import threading
import streamlit as st
from twilio.rest import Client
from pdfminer.high_level import extract_text
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import PyPDF2
import requests
# --- Text Extraction Utilities ---
def extract_text_from_pdf(pdf_path):
try:
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text
return text
except:
return extract_text(pdf_path)
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
return '\n'.join(para.text for para in doc.paragraphs)
except:
return ""
# --- Chunking & Retrieval ---
def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
tokens = tokenizer.tokenize(text)
chunks, start = [], 0
while start < len(tokens):
end = min(start + chunk_size, len(tokens))
chunk_tokens = tokens[start:end]
chunks.append(tokenizer.convert_tokens_to_string(chunk_tokens))
start += chunk_size - chunk_overlap
return chunks
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
q_embedding = embed_model.encode([question])[0]
D, I = index.search(np.array([q_embedding]), k)
return [text_chunks[i] for i in I[0]]
# --- Groq Answer Generator ---
def generate_answer_with_groq(question, context):
url = "https://api.groq.com/openai/v1/chat/completions"
api_key = os.environ.get("GROQ_API_KEY")
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
prompt = (
f"Customer asked: '{question}'\n\n"
f"Here is the relevant product or policy info to help:\n{context}\n\n"
f"Respond in a friendly and helpful tone as a toy shop support agent."
)
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": (
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
"Your goal is to politely answer customer questions, help them choose the right toys, "
"provide order or delivery information, explain return policies, and guide them through purchases. "
)
},
{"role": "user", "content": prompt},
],
"temperature": 0.5,
"max_tokens": 300,
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()['choices'][0]['message']['content'].strip()
# --- Twilio Functions ---
def get_latest_whatsapp_conversation_sid(client):
conversations = client.conversations.v1.conversations.list(limit=20)
for convo in conversations:
try:
participants = client.conversations.v1.conversations(convo.sid).participants.list()
for p in participants:
if (p.identity and p.identity.startswith("whatsapp:")) or (
p.messaging_binding and p.messaging_binding.get("address", "").startswith("whatsapp:")
):
return convo.sid
except:
continue
return conversations[0].sid if conversations else None
def fetch_latest_incoming_message(client, conversation_sid):
messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
for msg in reversed(messages):
if msg.author.startswith("whatsapp:"):
return msg.body, msg.author, msg.index
return None, None, None
def send_twilio_message(client, conversation_sid, body):
return client.conversations.v1.conversations(conversation_sid).messages.create(
author="system", body=body
)
# --- Load Knowledge Base ---
def setup_knowledge_base():
folder_path = "docs"
all_text = ""
for file in os.listdir(folder_path):
path = os.path.join(folder_path, file)
if file.endswith(".pdf"):
all_text += extract_text_from_pdf(path) + "\n"
elif file.endswith((".docx", ".doc")):
all_text += extract_text_from_docx(path) + "\n"
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
chunks = chunk_text(all_text, tokenizer)
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(chunks)
dim = embeddings[0].shape[0]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings).astype('float32'))
return index, model, chunks
# --- Background Polling Thread ---
def start_message_monitor(client, convo_sid, index, embed_model, text_chunks):
last_index = -1
def poll_loop():
nonlocal last_index
while True:
try:
question, sender, msg_index = fetch_latest_incoming_message(client, convo_sid)
if question and msg_index > last_index:
last_index = msg_index
print(f"\nπŸ“₯ New Message from {sender}: {question}")
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
answer = generate_answer_with_groq(question, context)
send_twilio_message(client, convo_sid, answer)
print(f"πŸ“€ Sent Reply: {answer}")
time.sleep(3)
except Exception as e:
print("❌ Error in polling loop:", e)
time.sleep(5)
thread = threading.Thread(target=poll_loop, daemon=True)
thread.start()
# --- Streamlit UI ---
st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")
account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
if not all([account_sid, auth_token, GROQ_API_KEY]):
st.warning("⚠️ Provide all credentials below:")
account_sid = st.text_input("Twilio SID", value=account_sid or "")
auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
if all([account_sid, auth_token, GROQ_API_KEY]):
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
client = Client(account_sid, auth_token)
conversation_sid = get_latest_whatsapp_conversation_sid(client)
if conversation_sid:
st.success("βœ… WhatsApp connected. Initializing chatbot...")
index, model, chunks = setup_knowledge_base()
start_message_monitor(client, conversation_sid, index, model, chunks)
st.success("🟒 Chatbot is running in background and will reply automatically.")
else:
st.error("❌ No WhatsApp conversation found.")