Quasa / app.py
masadonline's picture
Update app.py
f5fc1c4 verified
raw
history blame
5.52 kB
import os
import streamlit as st
import PyPDF2
from pdfminer.high_level import extract_text
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from groq import Groq
import docx # to read .docx files
# --- Helper Functions ---
def extract_text_from_pdf(pdf_path):
try:
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
if page_text:
text += page_text
return text
except Exception as e:
st.warning(f"PyPDF2 failed with error: {e}. Trying pdfminer.six...")
return extract_text(pdf_path)
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
return '\n'.join(full_text)
except Exception as e:
st.warning(f"Failed to read DOCX {docx_path}: {e}")
return ""
def chunk_text_with_tokenizer(text, tokenizer, chunk_size=150, chunk_overlap=30):
tokens = tokenizer.tokenize(text)
chunks = []
start = 0
while start < len(tokens):
end = min(start + chunk_size, len(tokens))
chunk_tokens = tokens[start:end]
chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
chunks.append(chunk_text)
start += chunk_size - chunk_overlap
return chunks
def retrieve_relevant_chunks(question, index, embeddings_model, text_chunks, k=3):
question_embedding = embeddings_model.encode([question])[0]
D, I = index.search(np.array([question_embedding]), k)
relevant_chunks = [text_chunks[i] for i in I[0]]
return relevant_chunks
def generate_answer_with_groq(question, context):
prompt = f"Based on the following context, answer the question: '{question}'\n\nContext:\n{context}"
model_name = "llama-3.3-70b-versatile" # Adjust model if needed
try:
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
response = groq_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": "You are an AI Assistant for Small Businesses. You are an SME expert."},
{"role": "user", "content": prompt},
]
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error generating answer with Groq API: {e}")
return "I'm sorry, I couldn't generate an answer at this time."
# --- Streamlit UI & Logic ---
st.set_page_config(page_title="SMEHelpBot πŸ€–", layout="wide")
st.title("πŸ€– SMEHelpBot – Your AI Assistant for Small Businesses")
# GROQ API key check
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
st.error("❌ Please set your GROQ_API_KEY in environment or .streamlit/secrets.toml")
st.stop()
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
# Load and process all docs at startup
@st.cache_data(show_spinner=True)
def load_and_prepare_docs(folder_path="docs"):
all_text = ""
if not os.path.exists(folder_path):
st.error(f"Folder '{folder_path}' does not exist!")
return None, None, None
# Collect all pdf and docx files
files = [f for f in os.listdir(folder_path) if f.lower().endswith(('.pdf', '.docx', '.doc'))]
if not files:
st.error(f"No PDF or DOCX files found in folder '{folder_path}'.")
return None, None, None
for file in files:
path = os.path.join(folder_path, file)
if file.lower().endswith('.pdf'):
text = extract_text_from_pdf(path)
elif file.lower().endswith(('.docx', '.doc')):
text = extract_text_from_docx(path)
else:
text = ""
if text:
all_text += text + "\n\n"
if not all_text.strip():
st.error("No text extracted from documents.")
return None, None, None
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
text_chunks = chunk_text_with_tokenizer(all_text, tokenizer)
embedding_model = SentenceTransformer('all-mpnet-base-v2')
all_embeddings = embedding_model.encode(text_chunks) if text_chunks else None
if all_embeddings is None or len(all_embeddings) == 0:
st.error("No text chunks found to create embeddings.")
return None, None, None
embedding_dim = all_embeddings[0].shape[0]
index = faiss.IndexFlatL2(embedding_dim)
index.add(np.array(all_embeddings))
return index, embedding_model, text_chunks
index, embedding_model, text_chunks = load_and_prepare_docs()
user_question = st.text_input("πŸ’¬ Ask your question about SME documents:")
if st.button("Get Answer") and user_question:
if index is None or embedding_model is None or text_chunks is None:
st.error("The document knowledge base is not ready. Please check the errors above.")
else:
with st.spinner("Searching for relevant information and generating answer..."):
relevant_chunks = retrieve_relevant_chunks(user_question, index, embedding_model, text_chunks)
context = "\n\n".join(relevant_chunks)
answer = generate_answer_with_groq(user_question, context)
st.markdown("### Answer:")
st.success(answer)