Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,34 @@
|
|
1 |
import os
|
|
|
2 |
import time
|
3 |
import threading
|
|
|
|
|
|
|
4 |
import streamlit as st
|
5 |
-
from
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
from transformers import AutoTokenizer
|
8 |
-
import faiss
|
9 |
import numpy as np
|
10 |
-
import docx
|
11 |
-
from groq import Groq
|
12 |
import requests
|
13 |
-
|
14 |
from pdfminer.high_level import extract_text_to_fp
|
15 |
from pdfminer.layout import LAParams
|
|
|
|
|
|
|
|
|
16 |
from twilio.base.exceptions import TwilioRestException
|
17 |
-
import pdfplumber
|
18 |
-
import datetime
|
19 |
-
import csv
|
20 |
-
import json
|
21 |
-
import re
|
22 |
|
|
|
23 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
24 |
os.environ["PYTORCH_JIT"] = "0"
|
25 |
|
26 |
-
# ---------------- PDF
|
27 |
def _extract_tables_from_page(page):
|
28 |
tables = page.extract_tables()
|
29 |
formatted_tables = []
|
30 |
for table in tables:
|
31 |
-
|
32 |
-
|
33 |
-
formatted_row = [cell if cell is not None else "" for cell in row]
|
34 |
-
formatted_table.append(formatted_row)
|
35 |
-
formatted_tables.append(formatted_table)
|
36 |
return formatted_tables
|
37 |
|
38 |
def extract_text_from_pdf(pdf_path):
|
@@ -46,55 +42,48 @@ def extract_text_from_pdf(pdf_path):
|
|
46 |
if text:
|
47 |
text_output.write(text + "\n\n")
|
48 |
except Exception as e:
|
49 |
-
print(f"pdfplumber error: {e}")
|
50 |
with open(pdf_path, 'rb') as file:
|
51 |
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
|
52 |
return text_output.getvalue(), all_tables
|
53 |
|
54 |
-
def _format_tables_internal(tables):
|
55 |
-
formatted_tables_str = []
|
56 |
-
for table in tables:
|
57 |
-
with StringIO() as csvfile:
|
58 |
-
writer = csv.writer(csvfile)
|
59 |
-
writer.writerows(table)
|
60 |
-
formatted_tables_str.append(csvfile.getvalue())
|
61 |
-
return "\n\n".join(formatted_tables_str)
|
62 |
-
|
63 |
-
def clean_extracted_text(text):
|
64 |
-
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
|
65 |
-
|
66 |
def extract_text_from_docx(docx_path):
|
67 |
try:
|
68 |
doc = docx.Document(docx_path)
|
69 |
-
return
|
70 |
-
except:
|
|
|
71 |
return ""
|
72 |
|
73 |
def load_json_data(json_path):
|
74 |
try:
|
75 |
with open(json_path, 'r', encoding='utf-8') as f:
|
76 |
data = json.load(f)
|
|
|
|
|
77 |
if isinstance(data, dict):
|
78 |
-
|
79 |
-
|
80 |
-
elif isinstance(data, list):
|
81 |
-
# Flatten list of dictionaries
|
82 |
-
all_items = []
|
83 |
-
for item in data:
|
84 |
-
if isinstance(item, dict):
|
85 |
-
all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
|
86 |
-
return "\n\n".join(all_items)
|
87 |
-
else:
|
88 |
-
return json.dumps(data, ensure_ascii=False, indent=2)
|
89 |
except Exception as e:
|
90 |
-
print(f"JSON
|
91 |
return ""
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
|
95 |
tokens = tokenizer.tokenize(text)
|
96 |
-
chunks = []
|
97 |
-
start = 0
|
98 |
while start < len(tokens):
|
99 |
end = min(start + chunk_size, len(tokens))
|
100 |
chunk = tokens[start:end]
|
@@ -106,9 +95,9 @@ def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
|
|
106 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
107 |
q_embedding = embed_model.encode(question)
|
108 |
D, I = index.search(np.array([q_embedding]), k)
|
109 |
-
return [text_chunks[i] for i in I[0]]
|
110 |
|
111 |
-
# ----------------
|
112 |
def generate_answer_with_groq(question, context):
|
113 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
114 |
api_key = os.environ.get("GROQ_API_KEY")
|
@@ -116,131 +105,86 @@ def generate_answer_with_groq(question, context):
|
|
116 |
"Authorization": f"Bearer {api_key}",
|
117 |
"Content-Type": "application/json",
|
118 |
}
|
|
|
119 |
prompt = (
|
120 |
f"Customer asked: '{question}'\n\n"
|
121 |
-
f"Here is the relevant information
|
122 |
-
|
123 |
-
f"addressing the customer by their name if it's available in the context."
|
124 |
)
|
|
|
125 |
payload = {
|
126 |
"model": "llama3-8b-8192",
|
127 |
"messages": [
|
128 |
{
|
129 |
"role": "system",
|
130 |
-
"content":
|
131 |
-
"You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
|
132 |
-
"Help customers with toys, delivery, and returns in a helpful tone. "
|
133 |
-
"When responding, try to find the customer's name in the provided context "
|
134 |
-
"and address them directly. If the context contains order details and status, "
|
135 |
-
"include that information in your response."
|
136 |
-
)
|
137 |
},
|
138 |
-
{"role": "user", "content": prompt}
|
139 |
-
]
|
140 |
-
"temperature": 0.5,
|
141 |
-
"max_tokens": 300,
|
142 |
}
|
143 |
-
response = requests.post(url, headers=headers, json=payload)
|
144 |
-
response.raise_for_status()
|
145 |
-
return response.json()['choices'][0]['message']['content'].strip()
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
text
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
model = SentenceTransformer('all-mpnet-base-v2')
|
198 |
-
embeddings = model.encode(chunks, show_progress_bar=False)
|
199 |
-
dim = embeddings[0].shape[0]
|
200 |
-
index = faiss.IndexFlatL2(dim)
|
201 |
-
index.add(np.array(embeddings).astype('float32'))
|
202 |
-
return index, model, chunks
|
203 |
-
|
204 |
-
# ---------------- Monitor Twilio Conversations ----------------
|
205 |
-
def start_conversation_monitor(client, index, embed_model, text_chunks):
|
206 |
-
processed_convos = set()
|
207 |
-
last_processed_timestamp = {}
|
208 |
-
|
209 |
-
def poll_convo(convo_sid):
|
210 |
-
while True:
|
211 |
-
latest_msg = fetch_latest_incoming_message(client, convo_sid)
|
212 |
-
if latest_msg:
|
213 |
-
msg_time = latest_msg["timestamp"]
|
214 |
-
if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
|
215 |
-
last_processed_timestamp[convo_sid] = msg_time
|
216 |
-
question = latest_msg["body"]
|
217 |
-
sender = latest_msg["author"]
|
218 |
-
print(f"π© New message from {sender}: {question}")
|
219 |
-
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
|
220 |
-
answer = generate_answer_with_groq(question, context)
|
221 |
-
send_twilio_message(client, convo_sid, answer)
|
222 |
-
time.sleep(5)
|
223 |
-
|
224 |
-
for convo in client.conversations.v1.conversations.list():
|
225 |
-
if convo.sid not in processed_convos:
|
226 |
-
processed_convos.add(convo.sid)
|
227 |
-
threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()
|
228 |
-
|
229 |
-
# ---------------- Main Entry ----------------
|
230 |
-
if __name__ == "__main__":
|
231 |
-
st.title("π€ ToyBot WhatsApp Assistant")
|
232 |
-
st.write("Initializing knowledge base...")
|
233 |
-
|
234 |
-
index, model, chunks = setup_knowledge_base()
|
235 |
-
|
236 |
-
st.success("Knowledge base loaded.")
|
237 |
-
st.write("Waiting for WhatsApp messages...")
|
238 |
-
|
239 |
-
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
240 |
-
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
241 |
-
if not account_sid or not auth_token:
|
242 |
-
st.error("β Twilio credentials not set.")
|
243 |
-
else:
|
244 |
-
client = Client(account_sid, auth_token)
|
245 |
-
start_conversation_monitor(client, index, model, chunks)
|
246 |
-
st.info("β
Bot is now monitoring Twilio conversations.")
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
import time
|
4 |
import threading
|
5 |
+
import datetime
|
6 |
+
import csv
|
7 |
+
import docx
|
8 |
import streamlit as st
|
9 |
+
from io import StringIO
|
|
|
|
|
|
|
10 |
import numpy as np
|
|
|
|
|
11 |
import requests
|
12 |
+
import pdfplumber
|
13 |
from pdfminer.high_level import extract_text_to_fp
|
14 |
from pdfminer.layout import LAParams
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
import faiss
|
18 |
+
from twilio.rest import Client
|
19 |
from twilio.base.exceptions import TwilioRestException
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Start time for filtering incoming messages
|
22 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
23 |
os.environ["PYTORCH_JIT"] = "0"
|
24 |
|
25 |
+
# ---------------- PDF / DOCX / JSON LOADERS ----------------
|
26 |
def _extract_tables_from_page(page):
|
27 |
tables = page.extract_tables()
|
28 |
formatted_tables = []
|
29 |
for table in tables:
|
30 |
+
formatted_row = [[cell if cell else "" for cell in row] for row in table]
|
31 |
+
formatted_tables.append(formatted_row)
|
|
|
|
|
|
|
32 |
return formatted_tables
|
33 |
|
34 |
def extract_text_from_pdf(pdf_path):
|
|
|
42 |
if text:
|
43 |
text_output.write(text + "\n\n")
|
44 |
except Exception as e:
|
45 |
+
print(f"[pdfplumber error] Falling back: {e}")
|
46 |
with open(pdf_path, 'rb') as file:
|
47 |
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
|
48 |
return text_output.getvalue(), all_tables
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def extract_text_from_docx(docx_path):
|
51 |
try:
|
52 |
doc = docx.Document(docx_path)
|
53 |
+
return "\n".join(para.text for para in doc.paragraphs)
|
54 |
+
except Exception as e:
|
55 |
+
print(f"[DOCX error] {e}")
|
56 |
return ""
|
57 |
|
58 |
def load_json_data(json_path):
|
59 |
try:
|
60 |
with open(json_path, 'r', encoding='utf-8') as f:
|
61 |
data = json.load(f)
|
62 |
+
if isinstance(data, list):
|
63 |
+
return "\n\n".join("\n".join(f"{k}: {v}" for k, v in d.items()) for d in data if isinstance(d, dict))
|
64 |
if isinstance(data, dict):
|
65 |
+
return "\n".join(f"{k}: {v}" for k, v in data.items())
|
66 |
+
return str(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
except Exception as e:
|
68 |
+
print(f"[JSON error] {e}")
|
69 |
return ""
|
70 |
|
71 |
+
def _format_tables_internal(tables):
|
72 |
+
formatted = []
|
73 |
+
for table in tables:
|
74 |
+
with StringIO() as csvfile:
|
75 |
+
writer = csv.writer(csvfile)
|
76 |
+
writer.writerows(table)
|
77 |
+
formatted.append(csvfile.getvalue())
|
78 |
+
return "\n\n".join(formatted)
|
79 |
+
|
80 |
+
def clean_extracted_text(text):
|
81 |
+
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
|
82 |
+
|
83 |
+
# ---------------- CHUNKING ----------------
|
84 |
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
|
85 |
tokens = tokenizer.tokenize(text)
|
86 |
+
chunks, start = [], 0
|
|
|
87 |
while start < len(tokens):
|
88 |
end = min(start + chunk_size, len(tokens))
|
89 |
chunk = tokens[start:end]
|
|
|
95 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
96 |
q_embedding = embed_model.encode(question)
|
97 |
D, I = index.search(np.array([q_embedding]), k)
|
98 |
+
return [text_chunks[i] for i in I[0] if i < len(text_chunks)]
|
99 |
|
100 |
+
# ---------------- GROQ ANSWER GENERATOR ----------------
|
101 |
def generate_answer_with_groq(question, context):
|
102 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
103 |
api_key = os.environ.get("GROQ_API_KEY")
|
|
|
105 |
"Authorization": f"Bearer {api_key}",
|
106 |
"Content-Type": "application/json",
|
107 |
}
|
108 |
+
|
109 |
prompt = (
|
110 |
f"Customer asked: '{question}'\n\n"
|
111 |
+
f"Here is the relevant information:\n{context}\n\n"
|
112 |
+
"Reply as a friendly toy shop assistant, include customer name from the context if possible."
|
|
|
113 |
)
|
114 |
+
|
115 |
payload = {
|
116 |
"model": "llama3-8b-8192",
|
117 |
"messages": [
|
118 |
{
|
119 |
"role": "system",
|
120 |
+
"content": "You are ToyBot, a helpful assistant for an online toy shop."
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
},
|
122 |
+
{"role": "user", "content": prompt}
|
123 |
+
]
|
|
|
|
|
124 |
}
|
|
|
|
|
|
|
125 |
|
126 |
+
response = requests.post(url, headers=headers, json=payload)
|
127 |
+
return response.json()["choices"][0]["message"]["content"]
|
128 |
+
|
129 |
+
# ---------------- TWILIO MONITOR ----------------
|
130 |
+
def handle_incoming_messages(index, embed_model, tokenizer, text_chunks):
|
131 |
+
client = Client(os.environ["TWILIO_ACCOUNT_SID"], os.environ["TWILIO_AUTH_TOKEN"])
|
132 |
+
conversation_sid = os.environ.get("TWILIO_CONVERSATION_SID")
|
133 |
+
|
134 |
+
if not conversation_sid:
|
135 |
+
print("β TWILIO_CONVERSATION_SID not set")
|
136 |
+
return
|
137 |
+
|
138 |
+
last_check_time = APP_START_TIME
|
139 |
+
|
140 |
+
while True:
|
141 |
+
try:
|
142 |
+
messages = client.conversations.conversations(conversation_sid).messages.list(order="asc")
|
143 |
+
for msg in messages:
|
144 |
+
msg_time = msg.date_created.replace(tzinfo=datetime.timezone.utc)
|
145 |
+
if msg_time > last_check_time:
|
146 |
+
print(f"π© New message from {msg.author}: {msg.body}")
|
147 |
+
answer = generate_answer_with_groq(msg.body, "\n".join(retrieve_chunks(msg.body, index, embed_model, text_chunks)))
|
148 |
+
client.conversations.conversations(conversation_sid).messages.create(author="ToyBot", body=answer)
|
149 |
+
last_check_time = datetime.datetime.now(datetime.timezone.utc)
|
150 |
+
except TwilioRestException as e:
|
151 |
+
print(f"[Twilio error] {e}")
|
152 |
+
time.sleep(10)
|
153 |
+
|
154 |
+
# ---------------- STREAMLIT UI ----------------
|
155 |
+
st.title("π ToyShop Assistant β RAG WhatsApp Bot")
|
156 |
+
|
157 |
+
uploaded_files = st.file_uploader("π Upload your documents (PDF, DOCX, JSON)", accept_multiple_files=True)
|
158 |
+
if uploaded_files:
|
159 |
+
full_text = ""
|
160 |
+
all_tables = []
|
161 |
|
162 |
+
for file in uploaded_files:
|
163 |
+
ext = file.name.lower().split(".")[-1]
|
164 |
+
if ext == "pdf":
|
165 |
+
text, tables = extract_text_from_pdf(file)
|
166 |
+
all_tables.extend(tables)
|
167 |
+
elif ext == "docx":
|
168 |
+
text = extract_text_from_docx(file)
|
169 |
+
elif ext == "json":
|
170 |
+
text = load_json_data(file)
|
171 |
+
else:
|
172 |
+
text = file.read().decode("utf-8")
|
173 |
+
full_text += clean_extracted_text(text) + "\n\n"
|
174 |
+
|
175 |
+
# Load models
|
176 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
177 |
+
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
178 |
+
chunks = chunk_text(full_text, tokenizer)
|
179 |
+
embeddings = embed_model.encode(chunks)
|
180 |
+
|
181 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
182 |
+
index.add(np.array(embeddings))
|
183 |
+
|
184 |
+
# Start listener thread
|
185 |
+
if "listener_started" not in st.session_state:
|
186 |
+
threading.Thread(target=handle_incoming_messages, args=(index, embed_model, tokenizer, chunks), daemon=True).start()
|
187 |
+
st.session_state.listener_started = True
|
188 |
+
st.success("β
WhatsApp listener started.")
|
189 |
+
|
190 |
+
st.success(f"π Knowledge base built with {len(chunks)} chunks")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|