Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,27 +9,25 @@ import pandas as pd
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from openai import OpenAI
|
11 |
from dotenv import load_dotenv
|
12 |
-
import torch
|
13 |
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
16 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
17 |
|
18 |
-
# Setup GROQ
|
19 |
client = OpenAI(api_key=GROQ_API_KEY, base_url="https://api.groq.com/openai/v1")
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2", trust_remote_code=True)
|
24 |
-
embedder.to(device)
|
25 |
-
|
26 |
-
# LLM model name
|
27 |
LLM_MODEL = "llama3-8b-8192"
|
|
|
28 |
|
29 |
-
# Streamlit setup
|
30 |
st.set_page_config(page_title="π§Έ ToyShop Assistant", layout="wide")
|
31 |
st.title("π§Έ ToyShop RAG-Based Assistant")
|
32 |
|
|
|
|
|
33 |
def extract_pdf_text(file):
|
34 |
text = ""
|
35 |
with pdfplumber.open(file) as pdf:
|
@@ -40,8 +38,17 @@ def extract_pdf_text(file):
|
|
40 |
return text.strip()
|
41 |
|
42 |
def load_json_orders(json_file):
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def build_index(text_chunks):
|
47 |
vectors = embedder.encode(text_chunks)
|
@@ -57,49 +64,56 @@ def ask_llm(context, query):
|
|
57 |
)
|
58 |
return response.choices[0].message.content.strip()
|
59 |
|
60 |
-
# File upload
|
|
|
61 |
st.subheader("π Upload Customer Orders (JSON)")
|
62 |
orders_file = st.file_uploader("Upload JSON file", type="json")
|
63 |
|
64 |
-
st.subheader("π Upload
|
65 |
pdf_files = st.file_uploader("Upload one or more PDFs", type="pdf", accept_multiple_files=True)
|
66 |
|
67 |
order_chunks, pdf_chunks = [], []
|
68 |
|
69 |
-
#
|
70 |
if orders_file:
|
71 |
-
|
72 |
-
|
73 |
order_chunks = [json.dumps(order, ensure_ascii=False) for order in orders]
|
74 |
st.success(f"β
Loaded {len(order_chunks)} customer order records.")
|
75 |
-
st.dataframe(pd.DataFrame(orders), use_container_width=True)
|
76 |
-
except Exception as e:
|
77 |
-
st.error(f"β Error loading JSON: {e}")
|
78 |
|
79 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
if pdf_files:
|
81 |
for pdf_file in pdf_files:
|
82 |
try:
|
83 |
text = extract_pdf_text(pdf_file)
|
84 |
-
pdf_chunks.extend(text.split("\n\n")) #
|
|
|
85 |
except Exception as e:
|
86 |
st.error(f"β Failed to read {pdf_file.name}: {e}")
|
87 |
|
88 |
-
# Build index if we have content
|
89 |
combined_chunks = order_chunks + pdf_chunks
|
90 |
|
|
|
91 |
if combined_chunks:
|
92 |
index, sources = build_index(combined_chunks)
|
93 |
|
94 |
st.subheader("β Ask a Question")
|
95 |
-
user_query = st.text_input("What would you like to know?")
|
96 |
|
97 |
if user_query:
|
98 |
query_vector = embedder.encode([user_query])
|
99 |
D, I = index.search(query_vector, k=5)
|
100 |
context = "\n---\n".join([sources[i] for i in I[0]])
|
101 |
|
102 |
-
with st.spinner("Thinking..."):
|
103 |
try:
|
104 |
answer = ask_llm(context, user_query)
|
105 |
st.markdown("### π§ Answer")
|
@@ -107,4 +121,4 @@ if combined_chunks:
|
|
107 |
except Exception as e:
|
108 |
st.error(f"β GROQ API Error: {e}")
|
109 |
else:
|
110 |
-
st.info("π Please upload both JSON orders and PDFs to begin.")
|
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from openai import OpenAI
|
11 |
from dotenv import load_dotenv
|
|
|
12 |
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
15 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
16 |
|
17 |
+
# Setup GROQ client
|
18 |
client = OpenAI(api_key=GROQ_API_KEY, base_url="https://api.groq.com/openai/v1")
|
19 |
|
20 |
+
# Constants
|
21 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
|
|
|
|
|
|
22 |
LLM_MODEL = "llama3-8b-8192"
|
23 |
+
embedder = SentenceTransformer(EMBEDDING_MODEL)
|
24 |
|
25 |
+
# Streamlit app setup
|
26 |
st.set_page_config(page_title="π§Έ ToyShop Assistant", layout="wide")
|
27 |
st.title("π§Έ ToyShop RAG-Based Assistant")
|
28 |
|
29 |
+
# --- Helper functions ---
|
30 |
+
|
31 |
def extract_pdf_text(file):
|
32 |
text = ""
|
33 |
with pdfplumber.open(file) as pdf:
|
|
|
38 |
return text.strip()
|
39 |
|
40 |
def load_json_orders(json_file):
|
41 |
+
try:
|
42 |
+
data = json.load(json_file)
|
43 |
+
if isinstance(data, list):
|
44 |
+
return data
|
45 |
+
elif isinstance(data, dict):
|
46 |
+
return list(data.values())
|
47 |
+
else:
|
48 |
+
return []
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"Error parsing JSON: {e}")
|
51 |
+
return []
|
52 |
|
53 |
def build_index(text_chunks):
|
54 |
vectors = embedder.encode(text_chunks)
|
|
|
64 |
)
|
65 |
return response.choices[0].message.content.strip()
|
66 |
|
67 |
+
# --- File upload section ---
|
68 |
+
|
69 |
st.subheader("π Upload Customer Orders (JSON)")
|
70 |
orders_file = st.file_uploader("Upload JSON file", type="json")
|
71 |
|
72 |
+
st.subheader("π Upload FAQs / Product Info / Return Policy (PDFs)")
|
73 |
pdf_files = st.file_uploader("Upload one or more PDFs", type="pdf", accept_multiple_files=True)
|
74 |
|
75 |
order_chunks, pdf_chunks = [], []
|
76 |
|
77 |
+
# --- Process JSON ---
|
78 |
if orders_file:
|
79 |
+
orders = load_json_orders(orders_file)
|
80 |
+
if orders:
|
81 |
order_chunks = [json.dumps(order, ensure_ascii=False) for order in orders]
|
82 |
st.success(f"β
Loaded {len(order_chunks)} customer order records.")
|
|
|
|
|
|
|
83 |
|
84 |
+
# Try to flatten for DataFrame view
|
85 |
+
try:
|
86 |
+
df = pd.json_normalize(orders)
|
87 |
+
st.dataframe(df, use_container_width=True)
|
88 |
+
except Exception:
|
89 |
+
st.warning("β οΈ Nested JSON detected. Showing raw JSON preview instead.")
|
90 |
+
st.json(orders)
|
91 |
+
|
92 |
+
# --- Process PDFs ---
|
93 |
if pdf_files:
|
94 |
for pdf_file in pdf_files:
|
95 |
try:
|
96 |
text = extract_pdf_text(pdf_file)
|
97 |
+
pdf_chunks.extend(text.split("\n\n")) # paragraph-wise
|
98 |
+
st.success(f"π Processed {pdf_file.name}")
|
99 |
except Exception as e:
|
100 |
st.error(f"β Failed to read {pdf_file.name}: {e}")
|
101 |
|
|
|
102 |
combined_chunks = order_chunks + pdf_chunks
|
103 |
|
104 |
+
# --- Question Answering Section ---
|
105 |
if combined_chunks:
|
106 |
index, sources = build_index(combined_chunks)
|
107 |
|
108 |
st.subheader("β Ask a Question")
|
109 |
+
user_query = st.text_input("What would you like to know?", placeholder="e.g. What is the status of order 123?")
|
110 |
|
111 |
if user_query:
|
112 |
query_vector = embedder.encode([user_query])
|
113 |
D, I = index.search(query_vector, k=5)
|
114 |
context = "\n---\n".join([sources[i] for i in I[0]])
|
115 |
|
116 |
+
with st.spinner("π€ Thinking..."):
|
117 |
try:
|
118 |
answer = ask_llm(context, user_query)
|
119 |
st.markdown("### π§ Answer")
|
|
|
121 |
except Exception as e:
|
122 |
st.error(f"β GROQ API Error: {e}")
|
123 |
else:
|
124 |
+
st.info("π Please upload both JSON orders and relevant PDFs to begin.")
|