|
|
|
"""2_preprocessing_test.ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/10c3x9G9z70J73l0LJDA8_VDZphQmHEZB |
|
""" |
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from sklearn.preprocessing import LabelEncoder |
|
import os |
|
from sklearn.model_selection import train_test_split |
|
import pickle |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
df1 = pd.read_csv("/content/drive/MyDrive/Google Colab/disease-symptom-prediction/data/dataset.csv") |
|
|
|
print(df1.shape) |
|
df1.head() |
|
|
|
df1.sort_values(by='Disease', inplace=True) |
|
df1.head() |
|
|
|
df1.drop_duplicates(inplace=True) |
|
df1.shape |
|
|
|
df1['Disease'].value_counts() |
|
|
|
df1[df1['Disease']=="Fungal infection"] |
|
|
|
df1.fillna("none", inplace=True) |
|
df1[df1['Disease']=="Fungal infection"] |
|
|
|
df1.columns = df1.columns.str.strip().str.lower() |
|
for col in df1.columns: |
|
df1[col] = df1[col].astype(str).str.strip().str.lower() |
|
|
|
|
|
symptom_cols = [col for col in df1.columns if col.startswith('symptom')] |
|
print(symptom_cols) |
|
|
|
all_symptoms = set() |
|
for col in symptom_cols: |
|
for val in df1[col].unique(): |
|
if val != 'none': |
|
all_symptoms.add(val) |
|
print(f"Unique symptoms: {len(all_symptoms)}") |
|
|
|
print(all_symptoms) |
|
|
|
df1.head() |
|
|
|
df1_num = pd.DataFrame(df1['disease']) |
|
|
|
for symptom in all_symptoms: |
|
df1_num[symptom] = df1[symptom_cols].apply(lambda row: int(symptom in row.values), axis=1) |
|
|
|
df1_num |
|
|
|
X = df1_num.drop('disease', axis=1) |
|
y = df1_num['disease'] |
|
X.shape, y.shape |
|
|
|
X.sum(axis=1) |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y) |
|
|
|
print(np.unique(y_train, return_counts=True)) |
|
print(np.unique(y_test, return_counts=True)) |
|
|
|
from sklearn.ensemble import RandomForestClassifier |
|
|
|
model = RandomForestClassifier(n_estimators=100,random_state=42) |
|
model.fit(X_train, y_train) |
|
model.fit(X_train, y_train) |
|
|
|
import pickle |
|
|
|
|
|
with open("disease_model.pkl", "wb") as f: |
|
pickle.dump(model, f) |
|
|
|
|
|
with open("symptoms.pkl", "wb") as f: |
|
pickle.dump(list(all_symptoms), f) |
|
|
|
|
|
all_symptoms = sorted(all_symptoms) |
|
|
|
|
|
display_symptoms = [symptom.replace('_', ' ').title() for symptom in all_symptoms] |
|
|
|
|
|
label_to_symptom = dict(zip(display_symptoms, all_symptoms)) |
|
|
|
from sklearn.metrics import accuracy_score, f1_score |
|
|
|
y_train_pred = model.predict(X_train) |
|
|
|
train_accuracy = accuracy_score(y_train, y_train_pred) |
|
train_f1_score = f1_score(y_train, y_train_pred,average="weighted") |
|
|
|
print("Train Accuracy:", train_accuracy) |
|
print("Train f1 score:", train_f1_score) |
|
|
|
y_test_pred = model.predict(X_test) |
|
test_accuracy = accuracy_score(y_test, y_test_pred) |
|
test_f1_score = f1_score(y_test, y_test_pred, average="weighted") |
|
print("Train Accuracy:", test_accuracy) |
|
print("Train f1 score:", test_f1_score) |
|
|
|
import numpy as np |
|
|
|
|
|
user_symptoms = ['nausea', 'vomiting', 'abdominal_pain', 'diarrhoea'] |
|
|
|
|
|
if len(user_symptoms) < 4: |
|
print("Tip: The model performs better if you enter at least 4 symptoms.\n") |
|
|
|
|
|
input_vector = [1 if symptom in user_symptoms else 0 for symptom in all_symptoms] |
|
input_vector = np.array([input_vector]) |
|
|
|
|
|
probas = model.predict_proba(input_vector)[0] |
|
max_proba = np.max(probas) |
|
predicted = model.classes_[np.argmax(probas)] |
|
|
|
|
|
threshold = 0.5 |
|
|
|
|
|
if max_proba < threshold: |
|
print("Warning: The model is not confident about this prediction.") |
|
print(f"Predicted disease: {predicted} (Confidence: {max_proba * 100:.1f}%)") |
|
else: |
|
print(f"Predicted disease: {predicted} (Confidence: {max_proba * 100:.1f}%)") |
|
|
|
|
|
def print_top_diseases(probas, model, top_n=5): |
|
classes = model.classes_ |
|
sorted_indices = np.argsort(probas)[::-1] |
|
print(f"\nTop {top_n} possible diseases:") |
|
for i in range(min(top_n, len(classes))): |
|
disease = classes[sorted_indices[i]] |
|
probability = probas[sorted_indices[i]] |
|
print(f"{i+1}. {disease}: {probability:.4f}") |
|
|
|
|
|
print_top_diseases(probas, model, top_n=5) |
|
|
|
|
|
import gradio as gr |
|
import pickle |
|
import numpy as np |
|
|
|
|
|
with open("disease_model.pkl", "rb") as f: |
|
model = pickle.load(f) |
|
|
|
with open("symptoms.pkl", "rb") as f: |
|
all_symptoms = pickle.load(f) |
|
|
|
|
|
all_symptoms = sorted(all_symptoms) |
|
display_symptoms = [s.replace('_', ' ').title() for s in all_symptoms] |
|
label_to_symptom = dict(zip(display_symptoms, all_symptoms)) |
|
|
|
|
|
MEDICAL_KNOWLEDGE = { |
|
|
|
"migraine": [ |
|
"For migraines: (1) Rest in dark room (2) OTC pain relievers (ibuprofen/acetaminophen) (3) Apply cold compress (4) Consult neurologist if frequent", |
|
"Migraine treatment options include triptans (prescription) and caffeine. Avoid triggers like bright lights or strong smells." |
|
], |
|
|
|
"allergy": [ |
|
"Allergy management: (1) Antihistamines (cetirizine/loratadine) (2) Nasal sprays (3) Allergy shots (immunotherapy) for severe cases", |
|
"For food allergies: Strict avoidance, carry epinephrine auto-injector (EpiPen), read food labels carefully" |
|
], |
|
"cold": [ |
|
"Treat colds with rest, fluids, and OTC pain relievers. See doctor if fever lasts >3 days", |
|
"Most colds resolve in 7-10 days. Use decongestants for nasal congestion" |
|
], |
|
"headache": [ |
|
"For headaches: Hydrate, rest, and use OTC pain relievers sparingly", |
|
"Persistent headaches require medical evaluation - consult your doctor" |
|
], |
|
"fever": [ |
|
"For fever: Rest, fluids, and acetaminophen/ibuprofen. Seek help if >39Β°C or lasts >3 days", |
|
"High fever warning: Seek emergency care if fever >40Β°C or with stiff neck" |
|
] |
|
} |
|
|
|
SPECIAL_RESPONSES = { |
|
"general approaches": "I can provide specific guidance for: allergies, migraines, colds, fever, back pain, rashes. What condition are you asking about?", |
|
"consult a doctor": "For these symptoms, seek medical care: severe pain, difficulty breathing, sudden weakness, high fever (>103Β°F), or symptoms lasting >7 days" |
|
} |
|
|
|
def get_medical_response(user_query): |
|
user_query = user_query.lower() |
|
|
|
|
|
for phrase, response in SPECIAL_RESPONSES.items(): |
|
if phrase in user_query: |
|
return response |
|
|
|
|
|
for condition, responses in MEDICAL_KNOWLEDGE.items(): |
|
if condition in user_query: |
|
return np.random.choice(responses) |
|
|
|
|
|
related = [cond for cond in MEDICAL_KNOWLEDGE.keys() if cond in user_query] |
|
if related: |
|
return f"Are you asking about {', '.join(related)}? {np.random.choice(MEDICAL_KNOWLEDGE[related[0]])}" |
|
|
|
return "I can advise on: " + ", ".join(MEDICAL_KNOWLEDGE.keys()) + ". Please be more specific." |
|
|
|
|
|
def predict_disease(selected_labels): |
|
if not selected_labels or len(selected_labels) < 4: |
|
return "β οΈ Please select at least 4 symptoms for accurate results." |
|
|
|
user_symptoms = [label_to_symptom[label] for label in selected_labels] |
|
input_vector = [1 if symptom in user_symptoms else 0 for symptom in all_symptoms] |
|
input_vector = np.array([input_vector]) |
|
probas = model.predict_proba(input_vector)[0] |
|
max_proba = np.max(probas) |
|
predicted = model.classes_[np.argmax(probas)] |
|
|
|
sorted_indices = np.argsort(probas)[::-1] |
|
top_diseases = [ |
|
f"<b>{i+1}. {model.classes_[idx]}</b> β {probas[idx]*100:.1f}%" |
|
for i, idx in enumerate(sorted_indices[:3]) |
|
] |
|
|
|
prediction_result = ( |
|
f"<div style='background: #001a33; padding: 15px; border-radius: 8px; margin-bottom: 15px;'>" |
|
f"<h3 style='color: #4fc3f7; margin-top: 0;'>π©Ί Predicted Disease</h3>" |
|
f"<p style='font-size: 18px; color: white;'>{predicted} <span style='color: #4fc3f7'>({max_proba*100:.1f}% confidence)</span></p>" |
|
"</div>" |
|
"<div style='background: #001a33; padding: 15px; border-radius: 8px;'>" |
|
"<h3 style='color: #4fc3f7; margin-top: 0;'>π Top 3 Possible Diseases</h3>" |
|
"<ul style='color: white; padding-left: 20px;'>" + |
|
"".join([f"<li>{d}</li>" for d in top_diseases]) + |
|
"</ul>" |
|
"</div>" |
|
) |
|
return prediction_result |
|
|
|
|
|
def chatbot_respond(message, chat_history): |
|
response = get_medical_response(message) |
|
return chat_history + [(message, response)], "" |
|
|
|
|
|
custom_css = """ |
|
:root { |
|
--primary: #4fc3f7; |
|
--secondary: #001a33; |
|
--text: #ffffff; |
|
--bg: #0a192f; |
|
--card-bg: #0a2342; |
|
--error: #ff6b6b; |
|
} |
|
body, .gradio-container { |
|
background: var(--bg) !important; |
|
color: var(--text) !important; |
|
font-family: 'Segoe UI', Roboto, sans-serif; |
|
} |
|
/* [Keep all your existing CSS styles] */ |
|
""" |
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
gr.Markdown(""" |
|
<div style="text-align: center; margin-bottom: 20px;"> |
|
<h1 style="margin-bottom: 5px;">𧬠Medical Diagnosis Assistant</h1> |
|
<p style="color: #4fc3f7; font-size: 16px;">Select symptoms for diagnosis and get medical advice</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1, min_width=300): |
|
gr.Markdown("### π Symptom Checker") |
|
symptoms_input = gr.CheckboxGroup( |
|
choices=display_symptoms, |
|
label="Select your symptoms:", |
|
interactive=True |
|
) |
|
predict_btn = gr.Button("Analyze Symptoms", variant="primary") |
|
prediction_output = gr.Markdown( |
|
label="Diagnosis Results", |
|
value="Your results will appear here..." |
|
) |
|
|
|
with gr.Column(scale=1, min_width=400): |
|
gr.Markdown("### π¬ Medical Advisor") |
|
chatbot = gr.Chatbot( |
|
label="Chat with Medical Advisor", |
|
show_label=False, |
|
bubble_full_width=False |
|
) |
|
with gr.Row(): |
|
user_input = gr.Textbox( |
|
placeholder="Ask about symptoms or treatments...", |
|
label="", |
|
show_label=False, |
|
container=False, |
|
scale=7 |
|
) |
|
send_btn = gr.Button("Send", scale=1, min_width=80) |
|
|
|
|
|
predict_btn.click( |
|
fn=predict_disease, |
|
inputs=symptoms_input, |
|
outputs=prediction_output |
|
) |
|
send_btn.click( |
|
fn=chatbot_respond, |
|
inputs=[user_input, chatbot], |
|
outputs=[chatbot, user_input] |
|
) |
|
user_input.submit( |
|
fn=chatbot_respond, |
|
inputs=[user_input, chatbot], |
|
outputs=[chatbot, user_input] |
|
) |
|
|
|
demo.launch() |