File size: 25,245 Bytes
540a985
af5e0d4
540a985
 
af5e0d4
c61e1ad
af5e0d4
2b6be77
af5e0d4
 
 
 
 
 
 
 
2b6be77
 
 
 
 
 
af5e0d4
2b6be77
af5e0d4
2b6be77
af5e0d4
c61e1ad
af5e0d4
2b6be77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af5e0d4
2b6be77
af5e0d4
2b6be77
c61e1ad
2b6be77
af5e0d4
2b6be77
c61e1ad
2b6be77
 
 
 
 
 
 
 
af5e0d4
2b6be77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af5e0d4
 
 
 
 
 
 
 
 
 
2b6be77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af5e0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540a985
af5e0d4
 
 
 
 
c61e1ad
af5e0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540a985
 
af5e0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b6be77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af5e0d4
 
 
2b6be77
 
af5e0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540a985
56c5ad3
af5e0d4
 
 
 
 
 
 
 
 
 
540a985
 
af5e0d4
540a985
af5e0d4
 
540a985
af5e0d4
 
79a501d
af5e0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540a985
af5e0d4
 
 
 
 
540a985
 
 
af5e0d4
 
 
 
540a985
af5e0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c61e1ad
540a985
af5e0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import gradio as gr
import pandas as pd
import os
import random
from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from PIL import Image
from filelock import FileLock # Added for file locking

import config
import utils

# --- Global Variables & Initial Setup ---
# Attempt to log in to Hugging Face Hub at startup
utils.login_hugging_face()

print(f"Attempting to load preferences from Hugging Face Hub, ensuring local {config.RESULTS_CSV_FILE} is synchronized.")
# We assume utils.load_preferences_from_hf_hub:
# 1. Downloads from Hub, overwrites local config.RESULTS_CSV_FILE.
# 2. If Hub file doesn't exist, local config.RESULTS_CSV_FILE becomes empty (or reflects this).
# 3. Returns the DataFrame loaded from the (now synchronized) local file.
# 4. Returns None on major failure (e.g. network, file not found on Hub).
preferences_df = utils.load_preferences_from_hf_hub(config.HF_DATASET_REPO_ID, config.RESULTS_CSV_FILE)

if preferences_df is None:
    print(f"Failed to load from Hub or Hub is empty/file not found. Initializing/loading from {config.RESULTS_CSV_FILE} as a fallback.")
    if os.path.exists(config.RESULTS_CSV_FILE):
        try:
            preferences_df = pd.read_csv(config.RESULTS_CSV_FILE)
            if not preferences_df.empty and list(preferences_df.columns) != config.CSV_HEADERS:
                print(f"Warning: Local CSV {config.RESULTS_CSV_FILE} columns ({list(preferences_df.columns)}) do not match expected headers ({config.CSV_HEADERS}). Re-initializing file and DataFrame.")
                preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
                preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
            elif preferences_df.empty: # Loaded an empty DataFrame
                # Check if the file itself had incorrect headers or was truly empty
                current_headers = []
                if os.path.getsize(config.RESULTS_CSV_FILE) > 0:
                    try:
                        current_headers = list(pd.read_csv(config.RESULTS_CSV_FILE, nrows=0).columns)
                    except Exception: # Handle cases where reading headers might fail
                        pass # Will be caught by re-initialization if headers are bad
                if current_headers != config.CSV_HEADERS:
                    print(f"Local CSV {config.RESULTS_CSV_FILE} is empty or has incorrect headers. Re-initializing file and DataFrame with correct headers.")
                    preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
                    preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
                else: # Empty dataframe, but headers in file are correct
                    preferences_df = pd.DataFrame(columns=config.CSV_HEADERS) # Ensure in-memory df also has columns

        except pd.errors.EmptyDataError:
            print(f"Local CSV {config.RESULTS_CSV_FILE} is empty. Initializing file and DataFrame with headers.")
            preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
            preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
        except Exception as e:
            print(f"Error loading local {config.RESULTS_CSV_FILE}: {e}. Initializing file and DataFrame.")
            preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
            preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
    else:
        print(f"Local CSV {config.RESULTS_CSV_FILE} not found. Initializing file and DataFrame.")
        preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
        preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
else:
    # Successfully loaded from Hub; local file config.RESULTS_CSV_FILE should be synchronized.
    print(f"Successfully loaded preferences from Hugging Face Hub. Local copy at {config.RESULTS_CSV_FILE} should be up-to-date.")
    if not preferences_df.empty and list(preferences_df.columns) != config.CSV_HEADERS:
        print(f"CRITICAL: Data from Hub has incorrect columns {list(preferences_df.columns)}. Expected {config.CSV_HEADERS}. Re-initializing local file and DataFrame to empty to prevent corruption.")
        preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
        preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
    elif preferences_df.empty:
        # Hub data is empty. Ensure DataFrame in memory has correct columns.
        # And ensure the local CSV (which should have been written by load_preferences_from_hf_hub) has correct headers.
        if list(preferences_df.columns) != config.CSV_HEADERS:
             preferences_df = pd.DataFrame(columns=config.CSV_HEADERS) # Correct columns in memory
        
        # Ensure the local file has correct headers if it's empty or its headers are wrong
        needs_header_rewrite = True
        if os.path.exists(config.RESULTS_CSV_FILE):
            if os.path.getsize(config.RESULTS_CSV_FILE) == 0: # File is completely empty
                 needs_header_rewrite = True
            else:
                try:
                    local_headers = list(pd.read_csv(config.RESULTS_CSV_FILE, nrows=0).columns)
                    if local_headers == config.CSV_HEADERS:
                        needs_header_rewrite = False
                except Exception: # Error reading headers, assume rewrite is needed
                    pass
        if needs_header_rewrite:
            print(f"Local file {config.RESULTS_CSV_FILE} (after Hub sync resulted in empty data) is empty or has incorrect headers. Writing/Re-writing headers.")
            pd.DataFrame(columns=config.CSV_HEADERS).to_csv(config.RESULTS_CSV_FILE, index=False)


# Final safety net: ensure preferences_df is a DataFrame with correct columns.
if not isinstance(preferences_df, pd.DataFrame) or list(preferences_df.columns) != config.CSV_HEADERS:
    print("Critical: preferences_df is not a valid DataFrame with correct headers after initialization. Resetting to empty with correct headers.")
    preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
    # Ensure the CSV file reflects this state
    preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)


# Scan for available data
ALL_SAMPLES_BY_DOMAIN = utils.scan_data_directory(config.DATA_FOLDER)
if not ALL_SAMPLES_BY_DOMAIN:
    print(f"CRITICAL: No data found in {config.DATA_FOLDER}. The app might not function correctly.")
    # Potentially raise an error or display a message in the UI if no data

# --- Scheduler for Periodic Uploads ---
def scheduled_upload_job():
    global preferences_df
    print(f"Running scheduled job: Preparing to upload preferences from {config.RESULTS_CSV_FILE} at {datetime.now()}")
    
    lock_path = config.RESULTS_CSV_FILE + ".lock"
    with FileLock(lock_path):
        print(f"Acquired lock for scheduled upload: {lock_path}")
        if os.path.exists(config.RESULTS_CSV_FILE):
            try:
                # Read the current state of the CSV file for upload
                df_to_upload = pd.read_csv(config.RESULTS_CSV_FILE)
                if not df_to_upload.empty:
                    utils.save_preferences_to_hf_hub(
                        df_to_upload, # df_to_upload is passed for the empty check inside save_preferences_to_hf_hub
                        config.HF_DATASET_REPO_ID,
                        config.RESULTS_CSV_FILE, # This is the target filename on the Hub
                        commit_message="Periodic background update"
                    )
                    print(f"Scheduled job: Attempted upload of data from {config.RESULTS_CSV_FILE}.")
                else:
                    print(f"Scheduled job: Local preferences file {config.RESULTS_CSV_FILE} is empty. Nothing to upload.")
            except pd.errors.EmptyDataError:
                print(f"Scheduled job: Local preferences file {config.RESULTS_CSV_FILE} is empty (read as EmptyDataError). Nothing to upload.")
            except Exception as e:
                print(f"Scheduled job: Error reading or uploading {config.RESULTS_CSV_FILE}: {e}")
        else:
            print(f"Scheduled job: Local preferences file {config.RESULTS_CSV_FILE} does not exist. Nothing to upload.")
        print(f"Released lock for scheduled upload: {lock_path}")

scheduler = BackgroundScheduler()
scheduler.add_job(scheduled_upload_job, 'interval', hours=config.PUSH_INTERVAL_HOURS)
scheduler.start()
print(f"Scheduler started. Will attempt to upload preferences every {config.PUSH_INTERVAL_HOURS} hour(s).")


# --- Core Gradio App Functions ---
def start_new_session():
    """Initializes a new user session."""
    session_id = utils.generate_session_id()
    sample_queue = utils.prepare_session_samples(ALL_SAMPLES_BY_DOMAIN, config.SAMPLES_PER_DOMAIN)
    current_sample_index = 0
    if not sample_queue:
        no_samples_msg = f"# ๐Ÿ˜ฅ No Samples Available!\n\n### Please check the data folder configuration or try again later."
        return session_id, sample_queue, current_sample_index, no_samples_msg, None, None, None, [], [], True
    
    print(f"New session started: {session_id}, with {len(sample_queue)} samples.")
    domain_prompt_md, bg, fg, s_data, out_imgs, disp_info, end_flag = load_and_display_sample(sample_queue, current_sample_index)
    return session_id, sample_queue, current_sample_index, domain_prompt_md, bg, fg, s_data, out_imgs, disp_info, end_flag


def load_and_display_sample(sample_queue, current_sample_index):
    """Loads and prepares a single sample for display."""
    if not sample_queue or current_sample_index >= len(sample_queue):
        end_session_msg = f"# ๐ŸŽ‰ All Rated! ๐ŸŽ‰\n\n### All samples for this session have been rated. Thank you!"
        return end_session_msg, None, None, None, [], [], True # End of session

    domain, sample_id = sample_queue[current_sample_index]
    sample_data = utils.load_sample_data(domain, sample_id)

    if sample_data is None:
        print(f"Error loading sample {domain}/{sample_id}. Skipping.")
        error_msg = f"## โš ๏ธ Error Loading Sample\n\nCould not load data for {domain}/{sample_id}. Skipping to the next one."
        return error_msg, None, None, None, [], [], False

    prompt_text = sample_data["prompt"]
    bg_img_path = sample_data["background_img_path"]
    fg_img_path = sample_data["foreground_img_path"]
    
    # Load input bg/fg images without forcing them to be square
    # The gr.Image component will handle scaling to the specified height while preserving aspect ratio.
    bg_image_to_display = Image.open(bg_img_path)
    fg_image_to_display = Image.open(fg_img_path)
    
    output_model_keys = list(sample_data["output_image_paths"].keys())
    random.shuffle(output_model_keys)
    
    displayed_models_info = []
    output_images_for_display = []
    
    # square_size is still used for output option images
    square_size = (config.IMAGE_DISPLAY_SIZE[0], config.IMAGE_DISPLAY_SIZE[0])

    for model_key in output_model_keys:
        img_path = sample_data["output_image_paths"][model_key]
        try:
            img = Image.open(img_path).resize(square_size) # Output images remain square
            output_images_for_display.append(img)
            displayed_models_info.append((model_key, img_path)) 
        except FileNotFoundError:
            print(f"Image not found: {img_path} for model {model_key}. Skipping this option.")
        except Exception as e:
            print(f"Error loading or resizing image {img_path}: {e}. Skipping this option.")

    blank_image = Image.new('RGB', square_size, (200, 200, 200))
    while len(output_images_for_display) < 4:
        output_images_for_display.append(blank_image)
        displayed_models_info.append(("BLANK_SLOT", "N/A"))

    domain_prompt_markdown = f"""
    <div style="padding:15px 20px 20px 20px;border-left:3px black;background-color:#4B5966;border-radius: 10px;color:black;">
    
    ### Domain: {domain}

    </div>
    <br>
    <div style="padding:15px 20px 20px 20px;border-left:3px black;background-color:#4B5966;border-radius: 10px;color:black;">
    
    ## Prompt        
        
    ### _"{prompt_text}"_
    
    </div>
    """
    
    return (
        domain_prompt_markdown,
        bg_image_to_display, # Pass the PIL image directly
        fg_image_to_display, # Pass the PIL image directly
        sample_data,
        output_images_for_display[:4],
        displayed_models_info[:4],
        False
    )

def process_vote(choice_index, session_id, sample_queue, current_sample_index, current_sample_data, displayed_models_info_for_sample):
    global preferences_df
    
    if current_sample_data is None or not displayed_models_info_for_sample or choice_index >= len(displayed_models_info_for_sample):
        print("Error: Invalid data for processing vote. Skipping.")
        current_sample_index += 1
        if current_sample_index >= len(sample_queue):
            error_end_msg = f"# โš ๏ธ Error Processing Vote โš ๏ธ\n\n### An issue occurred. The session has ended."
            return preferences_df, current_sample_index, error_end_msg, None, None, None, [], [], True
        else:
            next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide = load_and_display_sample(sample_queue, current_sample_index)
            return preferences_df, current_sample_index, next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide

    domain, sample_id = sample_queue[current_sample_index]
    preferred_model_key, _ = displayed_models_info_for_sample[choice_index]

    if preferred_model_key == "BLANK_SLOT":
        print("User clicked on a blank slot. Vote not recorded. Please select a valid image.")
        _prompt_md, _bg, _fg, _s_data, _out_imgs, _disp_info, _hide = load_and_display_sample(sample_queue, current_sample_index)
        return preferences_df, current_sample_index, _prompt_md, _bg, _fg, _s_data, _out_imgs, _disp_info, _hide

    print(f"Session {session_id}: Voted for model '{config.MODEL_DISPLAY_NAMES.get(preferred_model_key, preferred_model_key)}' (key: {preferred_model_key}) for sample {domain}/{sample_id}")

    preferences_df = utils.record_preference(
        df=preferences_df,
        session_id=session_id,
        domain=domain,
        sample_id=sample_id,
        prompt=current_sample_data["prompt"],
        bg_path=current_sample_data["background_img_path"],
        fg_path=current_sample_data["foreground_img_path"],
        displayed_models_info=displayed_models_info_for_sample,
        preferred_model_key=preferred_model_key
    )
    
    # Append the new preference to the CSV file
    if not preferences_df.empty:
        new_preference_df = preferences_df.iloc[-1:] # Get the last row as a new DataFrame
        
        lock_path = config.RESULTS_CSV_FILE + ".lock"
        with FileLock(lock_path):
            print(f"Acquired lock for vote processing: {lock_path}")
            try:
                file_exists_and_has_content = os.path.exists(config.RESULTS_CSV_FILE) and os.path.getsize(config.RESULTS_CSV_FILE) > 0
                new_preference_df.to_csv(
                    config.RESULTS_CSV_FILE,
                    mode='a',
                    header=not file_exists_and_has_content, # Write header if file is new or empty
                    index=False
                )
                print(f"Appended new preference to {config.RESULTS_CSV_FILE}")
            except Exception as e:
                print(f"Error appending preference to local CSV {config.RESULTS_CSV_FILE}: {e}")
            finally:
                print(f"Released lock for vote processing: {lock_path}")
    else:
        print("Warning: preferences_df is empty after utils.record_preference. Cannot append to CSV.")

    # Removed full CSV overwrite:
    # try:
    #     preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
    #     print(f"Preferences saved locally to {config.RESULTS_CSV_FILE}")
    # except Exception as e:
    #     print(f"Error saving preferences locally: {e}")

    current_sample_index += 1
    if current_sample_index >= len(sample_queue):
        # Removed session end upload:
        # utils.save_preferences_to_hf_hub(preferences_df, config.HF_DATASET_REPO_ID, config.RESULTS_CSV_FILE, commit_message="Session end update")
        final_msg = f"# ๐ŸŽ‰ Session Complete! ๐ŸŽ‰\n\n### All samples have been rated. Thank you for your participation!"
        return preferences_df, current_sample_index, final_msg, None, None, None, [], [], True
    
    next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide = load_and_display_sample(sample_queue, current_sample_index)
    return preferences_df, current_sample_index, next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide


# --- Gradio UI Definition ---
custom_css = """
.custom-vote-button {
    background-color: #FFA500 !important; /* Light Orange for normal state */
    border-color: #FFA500 !important; /* Light Orange for normal state */
    color: white !important;
}
.custom-vote-button:hover {
    background-color: #FF8C00 !important; /* Dark Orange for hover state */
    border-color: #FF8C00 !important; /* Dark Orange for hover state */
    color: white !important;
}
"""

with gr.Blocks(title=config.APP_TITLE, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue), css=custom_css) as demo:
    session_id_state = gr.State()
    sample_queue_state = gr.State([])
    current_sample_index_state = gr.State(0)
    current_sample_data_state = gr.State() 
    displayed_models_info_state = gr.State([]) 
    preferences_df_state = gr.State(value=preferences_df)

    gr.Markdown(f"# {config.APP_TITLE}")
    gr.Markdown(config.APP_DESCRIPTION)

    with gr.Row():
        start_button = gr.Button("Start New Session / Load First Sample", variant="primary")
    
    with gr.Row(equal_height=False):
        with gr.Column(scale=1):
            domain_prompt_info_display = gr.Markdown(value="### Click 'Start New Session' to begin.")
        
        with gr.Column(scale=2):
            with gr.Row():
                input_bg_image_display = gr.Image(label="Input Background", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
                input_fg_image_display = gr.Image(label="Input Foreground", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)

    gr.Markdown("---")
    gr.Markdown("## Choose your preferred composed image:")

    output_image_displays = []
    vote_buttons = []
    with gr.Row():
        for i in range(4):
            with gr.Column():
                img_display = gr.Image(label=f"Option {i+1}", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
                output_image_displays.append(img_display)
                vote_btn = gr.Button(f"Select Option {i+1}", elem_id=f"vote_btn_{i}", elem_classes=["custom-vote-button"])
                vote_buttons.append(vote_btn)
    
    end_of_session_msg_display = gr.Markdown("", visible=True)

    def handle_start_session():
        s_id, s_queue, s_idx, domain_prompt_or_end_msg, bg, fg, s_data, out_imgs, disp_info, end = start_new_session()
        
        while len(out_imgs) < 4: out_imgs.append(None)
        while len(disp_info) < 4: disp_info.append(("BLANK_SLOT", "N/A"))
        
        updates = {
            session_id_state: s_id,
            sample_queue_state: s_queue,
            current_sample_index_state: s_idx,
            domain_prompt_info_display: domain_prompt_or_end_msg if not end else "",
            input_bg_image_display: bg,
            input_fg_image_display: fg,
            current_sample_data_state: s_data,
            displayed_models_info_state: disp_info,
            end_of_session_msg_display: domain_prompt_or_end_msg if end else ""
        }
        for i in range(4):
            updates[output_image_displays[i]] = out_imgs[i] if i < len(out_imgs) else None
            num_actual_outputs = 0
            if s_data and "output_image_paths" in s_data and s_data["output_image_paths"]:
                 num_actual_outputs = sum(1 for m_key, _ in disp_info if m_key != "BLANK_SLOT" and m_key is not None)
            updates[vote_buttons[i]] = gr.Button(interactive=not end and i < num_actual_outputs)
        return updates

    start_button.click(
        fn=handle_start_session,
        inputs=[],
        outputs=[
            session_id_state, sample_queue_state, current_sample_index_state,
            domain_prompt_info_display,
            input_bg_image_display, input_fg_image_display,
            current_sample_data_state, displayed_models_info_state, end_of_session_msg_display,
            *output_image_displays, *vote_buttons
        ]
    )

    def make_vote_fn(choice_idx):
        def vote_action(s_id, s_queue, s_idx, current_s_data, disp_info_for_sample, prefs_df_val):
            global preferences_df
            preferences_df = prefs_df_val

            new_prefs_df, new_s_idx, domain_prompt_or_end_msg, bg, fg, new_s_data, out_imgs, new_disp_info, end = process_vote(
                choice_idx, s_id, s_queue, s_idx, current_s_data, disp_info_for_sample
            )
            
            while len(out_imgs) < 4: out_imgs.append(None)
            while len(new_disp_info) < 4: new_disp_info.append(("BLANK_SLOT", "N/A"))

            updates = {
                preferences_df_state: new_prefs_df,
                current_sample_index_state: new_s_idx,
                domain_prompt_info_display: domain_prompt_or_end_msg if not end else "",
                input_bg_image_display: bg,
                input_fg_image_display: fg,
                current_sample_data_state: new_s_data,
                displayed_models_info_state: new_disp_info,
                end_of_session_msg_display: domain_prompt_or_end_msg if end else ""
            }
            for i in range(4):
                updates[output_image_displays[i]] = out_imgs[i] if i < len(out_imgs) else None
                num_actual_outputs = 0
                if new_s_data and "output_image_paths" in new_s_data and new_s_data["output_image_paths"]:
                    num_actual_outputs = sum(1 for m_key, _ in new_disp_info if m_key != "BLANK_SLOT" and m_key is not None)
                updates[vote_buttons[i]] = gr.Button(interactive=not end and i < num_actual_outputs)
            return updates
        return vote_action

    for i, btn in enumerate(vote_buttons):
        btn.click(
            fn=make_vote_fn(i),
            inputs=[
                session_id_state, sample_queue_state, current_sample_index_state,
                current_sample_data_state, displayed_models_info_state, preferences_df_state
            ],
            outputs=[
                preferences_df_state, current_sample_index_state,
                domain_prompt_info_display,
                input_bg_image_display, input_fg_image_display,
                current_sample_data_state, displayed_models_info_state, end_of_session_msg_display,
                *output_image_displays, *vote_buttons
            ]
        )

    gr.Markdown(config.FOOTER_MESSAGE)

if __name__ == "__main__":
    if not os.path.exists(config.DATA_FOLDER):
        print(f"Creating dummy data folder: {config.DATA_FOLDER}")
        os.makedirs(config.DATA_FOLDER, exist_ok=True)
        
        dummy_domains = ["Real-Cartoon", "Real-Painting"]
        dummy_model_keys = list(config.MODEL_OUTPUT_IMAGE_NAMES.keys())

        for domain in dummy_domains:
            domain_path = os.path.join(config.DATA_FOLDER, domain)
            os.makedirs(domain_path, exist_ok=True)
            for i in range(config.SAMPLES_PER_DOMAIN + 2):
                sample_id = f"sample_{i:03d}"
                sample_path = os.path.join(domain_path, sample_id)
                os.makedirs(sample_path, exist_ok=True)

                with open(os.path.join(sample_path, config.PROMPT_FILE_NAME), "w") as f:
                    f.write(f"This is a dummy prompt for {domain} sample {sample_id}.")
                
                colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (0,255,255)]
                try:
                    img_bg = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color='gray')
                    img_bg.save(os.path.join(sample_path, config.BACKGROUND_IMAGE_NAME))
                    
                    img_fg = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color='lightgray')
                    img_fg.save(os.path.join(sample_path, config.FOREGROUND_IMAGE_NAME))

                    for idx, model_key in enumerate(dummy_model_keys):
                        model_img_name = config.MODEL_OUTPUT_IMAGE_NAMES[model_key]
                        img_model = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color=colors[idx % len(colors)])
                        img_model.save(os.path.join(sample_path, model_img_name))
                except Exception as e:
                    print(f"Error creating dummy image: {e}")
        print("Dummy data creation complete.")
        ALL_SAMPLES_BY_DOMAIN = utils.scan_data_directory(config.DATA_FOLDER)

    demo.launch()

import atexit
atexit.register(lambda: scheduler.shutdown() if scheduler.running else None)