Spaces:
Running
Running
File size: 25,245 Bytes
540a985 af5e0d4 540a985 af5e0d4 c61e1ad af5e0d4 2b6be77 af5e0d4 2b6be77 af5e0d4 2b6be77 af5e0d4 2b6be77 af5e0d4 c61e1ad af5e0d4 2b6be77 af5e0d4 2b6be77 af5e0d4 2b6be77 c61e1ad 2b6be77 af5e0d4 2b6be77 c61e1ad 2b6be77 af5e0d4 2b6be77 af5e0d4 2b6be77 af5e0d4 540a985 af5e0d4 c61e1ad af5e0d4 540a985 af5e0d4 2b6be77 af5e0d4 2b6be77 af5e0d4 540a985 56c5ad3 af5e0d4 540a985 af5e0d4 540a985 af5e0d4 540a985 af5e0d4 79a501d af5e0d4 540a985 af5e0d4 540a985 af5e0d4 540a985 af5e0d4 c61e1ad 540a985 af5e0d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import gradio as gr
import pandas as pd
import os
import random
from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from PIL import Image
from filelock import FileLock # Added for file locking
import config
import utils
# --- Global Variables & Initial Setup ---
# Attempt to log in to Hugging Face Hub at startup
utils.login_hugging_face()
print(f"Attempting to load preferences from Hugging Face Hub, ensuring local {config.RESULTS_CSV_FILE} is synchronized.")
# We assume utils.load_preferences_from_hf_hub:
# 1. Downloads from Hub, overwrites local config.RESULTS_CSV_FILE.
# 2. If Hub file doesn't exist, local config.RESULTS_CSV_FILE becomes empty (or reflects this).
# 3. Returns the DataFrame loaded from the (now synchronized) local file.
# 4. Returns None on major failure (e.g. network, file not found on Hub).
preferences_df = utils.load_preferences_from_hf_hub(config.HF_DATASET_REPO_ID, config.RESULTS_CSV_FILE)
if preferences_df is None:
print(f"Failed to load from Hub or Hub is empty/file not found. Initializing/loading from {config.RESULTS_CSV_FILE} as a fallback.")
if os.path.exists(config.RESULTS_CSV_FILE):
try:
preferences_df = pd.read_csv(config.RESULTS_CSV_FILE)
if not preferences_df.empty and list(preferences_df.columns) != config.CSV_HEADERS:
print(f"Warning: Local CSV {config.RESULTS_CSV_FILE} columns ({list(preferences_df.columns)}) do not match expected headers ({config.CSV_HEADERS}). Re-initializing file and DataFrame.")
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
elif preferences_df.empty: # Loaded an empty DataFrame
# Check if the file itself had incorrect headers or was truly empty
current_headers = []
if os.path.getsize(config.RESULTS_CSV_FILE) > 0:
try:
current_headers = list(pd.read_csv(config.RESULTS_CSV_FILE, nrows=0).columns)
except Exception: # Handle cases where reading headers might fail
pass # Will be caught by re-initialization if headers are bad
if current_headers != config.CSV_HEADERS:
print(f"Local CSV {config.RESULTS_CSV_FILE} is empty or has incorrect headers. Re-initializing file and DataFrame with correct headers.")
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
else: # Empty dataframe, but headers in file are correct
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS) # Ensure in-memory df also has columns
except pd.errors.EmptyDataError:
print(f"Local CSV {config.RESULTS_CSV_FILE} is empty. Initializing file and DataFrame with headers.")
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
except Exception as e:
print(f"Error loading local {config.RESULTS_CSV_FILE}: {e}. Initializing file and DataFrame.")
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
else:
print(f"Local CSV {config.RESULTS_CSV_FILE} not found. Initializing file and DataFrame.")
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
else:
# Successfully loaded from Hub; local file config.RESULTS_CSV_FILE should be synchronized.
print(f"Successfully loaded preferences from Hugging Face Hub. Local copy at {config.RESULTS_CSV_FILE} should be up-to-date.")
if not preferences_df.empty and list(preferences_df.columns) != config.CSV_HEADERS:
print(f"CRITICAL: Data from Hub has incorrect columns {list(preferences_df.columns)}. Expected {config.CSV_HEADERS}. Re-initializing local file and DataFrame to empty to prevent corruption.")
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
elif preferences_df.empty:
# Hub data is empty. Ensure DataFrame in memory has correct columns.
# And ensure the local CSV (which should have been written by load_preferences_from_hf_hub) has correct headers.
if list(preferences_df.columns) != config.CSV_HEADERS:
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS) # Correct columns in memory
# Ensure the local file has correct headers if it's empty or its headers are wrong
needs_header_rewrite = True
if os.path.exists(config.RESULTS_CSV_FILE):
if os.path.getsize(config.RESULTS_CSV_FILE) == 0: # File is completely empty
needs_header_rewrite = True
else:
try:
local_headers = list(pd.read_csv(config.RESULTS_CSV_FILE, nrows=0).columns)
if local_headers == config.CSV_HEADERS:
needs_header_rewrite = False
except Exception: # Error reading headers, assume rewrite is needed
pass
if needs_header_rewrite:
print(f"Local file {config.RESULTS_CSV_FILE} (after Hub sync resulted in empty data) is empty or has incorrect headers. Writing/Re-writing headers.")
pd.DataFrame(columns=config.CSV_HEADERS).to_csv(config.RESULTS_CSV_FILE, index=False)
# Final safety net: ensure preferences_df is a DataFrame with correct columns.
if not isinstance(preferences_df, pd.DataFrame) or list(preferences_df.columns) != config.CSV_HEADERS:
print("Critical: preferences_df is not a valid DataFrame with correct headers after initialization. Resetting to empty with correct headers.")
preferences_df = pd.DataFrame(columns=config.CSV_HEADERS)
# Ensure the CSV file reflects this state
preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
# Scan for available data
ALL_SAMPLES_BY_DOMAIN = utils.scan_data_directory(config.DATA_FOLDER)
if not ALL_SAMPLES_BY_DOMAIN:
print(f"CRITICAL: No data found in {config.DATA_FOLDER}. The app might not function correctly.")
# Potentially raise an error or display a message in the UI if no data
# --- Scheduler for Periodic Uploads ---
def scheduled_upload_job():
global preferences_df
print(f"Running scheduled job: Preparing to upload preferences from {config.RESULTS_CSV_FILE} at {datetime.now()}")
lock_path = config.RESULTS_CSV_FILE + ".lock"
with FileLock(lock_path):
print(f"Acquired lock for scheduled upload: {lock_path}")
if os.path.exists(config.RESULTS_CSV_FILE):
try:
# Read the current state of the CSV file for upload
df_to_upload = pd.read_csv(config.RESULTS_CSV_FILE)
if not df_to_upload.empty:
utils.save_preferences_to_hf_hub(
df_to_upload, # df_to_upload is passed for the empty check inside save_preferences_to_hf_hub
config.HF_DATASET_REPO_ID,
config.RESULTS_CSV_FILE, # This is the target filename on the Hub
commit_message="Periodic background update"
)
print(f"Scheduled job: Attempted upload of data from {config.RESULTS_CSV_FILE}.")
else:
print(f"Scheduled job: Local preferences file {config.RESULTS_CSV_FILE} is empty. Nothing to upload.")
except pd.errors.EmptyDataError:
print(f"Scheduled job: Local preferences file {config.RESULTS_CSV_FILE} is empty (read as EmptyDataError). Nothing to upload.")
except Exception as e:
print(f"Scheduled job: Error reading or uploading {config.RESULTS_CSV_FILE}: {e}")
else:
print(f"Scheduled job: Local preferences file {config.RESULTS_CSV_FILE} does not exist. Nothing to upload.")
print(f"Released lock for scheduled upload: {lock_path}")
scheduler = BackgroundScheduler()
scheduler.add_job(scheduled_upload_job, 'interval', hours=config.PUSH_INTERVAL_HOURS)
scheduler.start()
print(f"Scheduler started. Will attempt to upload preferences every {config.PUSH_INTERVAL_HOURS} hour(s).")
# --- Core Gradio App Functions ---
def start_new_session():
"""Initializes a new user session."""
session_id = utils.generate_session_id()
sample_queue = utils.prepare_session_samples(ALL_SAMPLES_BY_DOMAIN, config.SAMPLES_PER_DOMAIN)
current_sample_index = 0
if not sample_queue:
no_samples_msg = f"# ๐ฅ No Samples Available!\n\n### Please check the data folder configuration or try again later."
return session_id, sample_queue, current_sample_index, no_samples_msg, None, None, None, [], [], True
print(f"New session started: {session_id}, with {len(sample_queue)} samples.")
domain_prompt_md, bg, fg, s_data, out_imgs, disp_info, end_flag = load_and_display_sample(sample_queue, current_sample_index)
return session_id, sample_queue, current_sample_index, domain_prompt_md, bg, fg, s_data, out_imgs, disp_info, end_flag
def load_and_display_sample(sample_queue, current_sample_index):
"""Loads and prepares a single sample for display."""
if not sample_queue or current_sample_index >= len(sample_queue):
end_session_msg = f"# ๐ All Rated! ๐\n\n### All samples for this session have been rated. Thank you!"
return end_session_msg, None, None, None, [], [], True # End of session
domain, sample_id = sample_queue[current_sample_index]
sample_data = utils.load_sample_data(domain, sample_id)
if sample_data is None:
print(f"Error loading sample {domain}/{sample_id}. Skipping.")
error_msg = f"## โ ๏ธ Error Loading Sample\n\nCould not load data for {domain}/{sample_id}. Skipping to the next one."
return error_msg, None, None, None, [], [], False
prompt_text = sample_data["prompt"]
bg_img_path = sample_data["background_img_path"]
fg_img_path = sample_data["foreground_img_path"]
# Load input bg/fg images without forcing them to be square
# The gr.Image component will handle scaling to the specified height while preserving aspect ratio.
bg_image_to_display = Image.open(bg_img_path)
fg_image_to_display = Image.open(fg_img_path)
output_model_keys = list(sample_data["output_image_paths"].keys())
random.shuffle(output_model_keys)
displayed_models_info = []
output_images_for_display = []
# square_size is still used for output option images
square_size = (config.IMAGE_DISPLAY_SIZE[0], config.IMAGE_DISPLAY_SIZE[0])
for model_key in output_model_keys:
img_path = sample_data["output_image_paths"][model_key]
try:
img = Image.open(img_path).resize(square_size) # Output images remain square
output_images_for_display.append(img)
displayed_models_info.append((model_key, img_path))
except FileNotFoundError:
print(f"Image not found: {img_path} for model {model_key}. Skipping this option.")
except Exception as e:
print(f"Error loading or resizing image {img_path}: {e}. Skipping this option.")
blank_image = Image.new('RGB', square_size, (200, 200, 200))
while len(output_images_for_display) < 4:
output_images_for_display.append(blank_image)
displayed_models_info.append(("BLANK_SLOT", "N/A"))
domain_prompt_markdown = f"""
<div style="padding:15px 20px 20px 20px;border-left:3px black;background-color:#4B5966;border-radius: 10px;color:black;">
### Domain: {domain}
</div>
<br>
<div style="padding:15px 20px 20px 20px;border-left:3px black;background-color:#4B5966;border-radius: 10px;color:black;">
## Prompt
### _"{prompt_text}"_
</div>
"""
return (
domain_prompt_markdown,
bg_image_to_display, # Pass the PIL image directly
fg_image_to_display, # Pass the PIL image directly
sample_data,
output_images_for_display[:4],
displayed_models_info[:4],
False
)
def process_vote(choice_index, session_id, sample_queue, current_sample_index, current_sample_data, displayed_models_info_for_sample):
global preferences_df
if current_sample_data is None or not displayed_models_info_for_sample or choice_index >= len(displayed_models_info_for_sample):
print("Error: Invalid data for processing vote. Skipping.")
current_sample_index += 1
if current_sample_index >= len(sample_queue):
error_end_msg = f"# โ ๏ธ Error Processing Vote โ ๏ธ\n\n### An issue occurred. The session has ended."
return preferences_df, current_sample_index, error_end_msg, None, None, None, [], [], True
else:
next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide = load_and_display_sample(sample_queue, current_sample_index)
return preferences_df, current_sample_index, next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide
domain, sample_id = sample_queue[current_sample_index]
preferred_model_key, _ = displayed_models_info_for_sample[choice_index]
if preferred_model_key == "BLANK_SLOT":
print("User clicked on a blank slot. Vote not recorded. Please select a valid image.")
_prompt_md, _bg, _fg, _s_data, _out_imgs, _disp_info, _hide = load_and_display_sample(sample_queue, current_sample_index)
return preferences_df, current_sample_index, _prompt_md, _bg, _fg, _s_data, _out_imgs, _disp_info, _hide
print(f"Session {session_id}: Voted for model '{config.MODEL_DISPLAY_NAMES.get(preferred_model_key, preferred_model_key)}' (key: {preferred_model_key}) for sample {domain}/{sample_id}")
preferences_df = utils.record_preference(
df=preferences_df,
session_id=session_id,
domain=domain,
sample_id=sample_id,
prompt=current_sample_data["prompt"],
bg_path=current_sample_data["background_img_path"],
fg_path=current_sample_data["foreground_img_path"],
displayed_models_info=displayed_models_info_for_sample,
preferred_model_key=preferred_model_key
)
# Append the new preference to the CSV file
if not preferences_df.empty:
new_preference_df = preferences_df.iloc[-1:] # Get the last row as a new DataFrame
lock_path = config.RESULTS_CSV_FILE + ".lock"
with FileLock(lock_path):
print(f"Acquired lock for vote processing: {lock_path}")
try:
file_exists_and_has_content = os.path.exists(config.RESULTS_CSV_FILE) and os.path.getsize(config.RESULTS_CSV_FILE) > 0
new_preference_df.to_csv(
config.RESULTS_CSV_FILE,
mode='a',
header=not file_exists_and_has_content, # Write header if file is new or empty
index=False
)
print(f"Appended new preference to {config.RESULTS_CSV_FILE}")
except Exception as e:
print(f"Error appending preference to local CSV {config.RESULTS_CSV_FILE}: {e}")
finally:
print(f"Released lock for vote processing: {lock_path}")
else:
print("Warning: preferences_df is empty after utils.record_preference. Cannot append to CSV.")
# Removed full CSV overwrite:
# try:
# preferences_df.to_csv(config.RESULTS_CSV_FILE, index=False)
# print(f"Preferences saved locally to {config.RESULTS_CSV_FILE}")
# except Exception as e:
# print(f"Error saving preferences locally: {e}")
current_sample_index += 1
if current_sample_index >= len(sample_queue):
# Removed session end upload:
# utils.save_preferences_to_hf_hub(preferences_df, config.HF_DATASET_REPO_ID, config.RESULTS_CSV_FILE, commit_message="Session end update")
final_msg = f"# ๐ Session Complete! ๐\n\n### All samples have been rated. Thank you for your participation!"
return preferences_df, current_sample_index, final_msg, None, None, None, [], [], True
next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide = load_and_display_sample(sample_queue, current_sample_index)
return preferences_df, current_sample_index, next_prompt_md, next_bg, next_fg, next_s_data, next_out_imgs, next_disp_info, next_hide
# --- Gradio UI Definition ---
custom_css = """
.custom-vote-button {
background-color: #FFA500 !important; /* Light Orange for normal state */
border-color: #FFA500 !important; /* Light Orange for normal state */
color: white !important;
}
.custom-vote-button:hover {
background-color: #FF8C00 !important; /* Dark Orange for hover state */
border-color: #FF8C00 !important; /* Dark Orange for hover state */
color: white !important;
}
"""
with gr.Blocks(title=config.APP_TITLE, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue), css=custom_css) as demo:
session_id_state = gr.State()
sample_queue_state = gr.State([])
current_sample_index_state = gr.State(0)
current_sample_data_state = gr.State()
displayed_models_info_state = gr.State([])
preferences_df_state = gr.State(value=preferences_df)
gr.Markdown(f"# {config.APP_TITLE}")
gr.Markdown(config.APP_DESCRIPTION)
with gr.Row():
start_button = gr.Button("Start New Session / Load First Sample", variant="primary")
with gr.Row(equal_height=False):
with gr.Column(scale=1):
domain_prompt_info_display = gr.Markdown(value="### Click 'Start New Session' to begin.")
with gr.Column(scale=2):
with gr.Row():
input_bg_image_display = gr.Image(label="Input Background", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
input_fg_image_display = gr.Image(label="Input Foreground", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
gr.Markdown("---")
gr.Markdown("## Choose your preferred composed image:")
output_image_displays = []
vote_buttons = []
with gr.Row():
for i in range(4):
with gr.Column():
img_display = gr.Image(label=f"Option {i+1}", type="pil", height=config.IMAGE_DISPLAY_SIZE[0], interactive=False)
output_image_displays.append(img_display)
vote_btn = gr.Button(f"Select Option {i+1}", elem_id=f"vote_btn_{i}", elem_classes=["custom-vote-button"])
vote_buttons.append(vote_btn)
end_of_session_msg_display = gr.Markdown("", visible=True)
def handle_start_session():
s_id, s_queue, s_idx, domain_prompt_or_end_msg, bg, fg, s_data, out_imgs, disp_info, end = start_new_session()
while len(out_imgs) < 4: out_imgs.append(None)
while len(disp_info) < 4: disp_info.append(("BLANK_SLOT", "N/A"))
updates = {
session_id_state: s_id,
sample_queue_state: s_queue,
current_sample_index_state: s_idx,
domain_prompt_info_display: domain_prompt_or_end_msg if not end else "",
input_bg_image_display: bg,
input_fg_image_display: fg,
current_sample_data_state: s_data,
displayed_models_info_state: disp_info,
end_of_session_msg_display: domain_prompt_or_end_msg if end else ""
}
for i in range(4):
updates[output_image_displays[i]] = out_imgs[i] if i < len(out_imgs) else None
num_actual_outputs = 0
if s_data and "output_image_paths" in s_data and s_data["output_image_paths"]:
num_actual_outputs = sum(1 for m_key, _ in disp_info if m_key != "BLANK_SLOT" and m_key is not None)
updates[vote_buttons[i]] = gr.Button(interactive=not end and i < num_actual_outputs)
return updates
start_button.click(
fn=handle_start_session,
inputs=[],
outputs=[
session_id_state, sample_queue_state, current_sample_index_state,
domain_prompt_info_display,
input_bg_image_display, input_fg_image_display,
current_sample_data_state, displayed_models_info_state, end_of_session_msg_display,
*output_image_displays, *vote_buttons
]
)
def make_vote_fn(choice_idx):
def vote_action(s_id, s_queue, s_idx, current_s_data, disp_info_for_sample, prefs_df_val):
global preferences_df
preferences_df = prefs_df_val
new_prefs_df, new_s_idx, domain_prompt_or_end_msg, bg, fg, new_s_data, out_imgs, new_disp_info, end = process_vote(
choice_idx, s_id, s_queue, s_idx, current_s_data, disp_info_for_sample
)
while len(out_imgs) < 4: out_imgs.append(None)
while len(new_disp_info) < 4: new_disp_info.append(("BLANK_SLOT", "N/A"))
updates = {
preferences_df_state: new_prefs_df,
current_sample_index_state: new_s_idx,
domain_prompt_info_display: domain_prompt_or_end_msg if not end else "",
input_bg_image_display: bg,
input_fg_image_display: fg,
current_sample_data_state: new_s_data,
displayed_models_info_state: new_disp_info,
end_of_session_msg_display: domain_prompt_or_end_msg if end else ""
}
for i in range(4):
updates[output_image_displays[i]] = out_imgs[i] if i < len(out_imgs) else None
num_actual_outputs = 0
if new_s_data and "output_image_paths" in new_s_data and new_s_data["output_image_paths"]:
num_actual_outputs = sum(1 for m_key, _ in new_disp_info if m_key != "BLANK_SLOT" and m_key is not None)
updates[vote_buttons[i]] = gr.Button(interactive=not end and i < num_actual_outputs)
return updates
return vote_action
for i, btn in enumerate(vote_buttons):
btn.click(
fn=make_vote_fn(i),
inputs=[
session_id_state, sample_queue_state, current_sample_index_state,
current_sample_data_state, displayed_models_info_state, preferences_df_state
],
outputs=[
preferences_df_state, current_sample_index_state,
domain_prompt_info_display,
input_bg_image_display, input_fg_image_display,
current_sample_data_state, displayed_models_info_state, end_of_session_msg_display,
*output_image_displays, *vote_buttons
]
)
gr.Markdown(config.FOOTER_MESSAGE)
if __name__ == "__main__":
if not os.path.exists(config.DATA_FOLDER):
print(f"Creating dummy data folder: {config.DATA_FOLDER}")
os.makedirs(config.DATA_FOLDER, exist_ok=True)
dummy_domains = ["Real-Cartoon", "Real-Painting"]
dummy_model_keys = list(config.MODEL_OUTPUT_IMAGE_NAMES.keys())
for domain in dummy_domains:
domain_path = os.path.join(config.DATA_FOLDER, domain)
os.makedirs(domain_path, exist_ok=True)
for i in range(config.SAMPLES_PER_DOMAIN + 2):
sample_id = f"sample_{i:03d}"
sample_path = os.path.join(domain_path, sample_id)
os.makedirs(sample_path, exist_ok=True)
with open(os.path.join(sample_path, config.PROMPT_FILE_NAME), "w") as f:
f.write(f"This is a dummy prompt for {domain} sample {sample_id}.")
colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (0,255,255)]
try:
img_bg = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color='gray')
img_bg.save(os.path.join(sample_path, config.BACKGROUND_IMAGE_NAME))
img_fg = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color='lightgray')
img_fg.save(os.path.join(sample_path, config.FOREGROUND_IMAGE_NAME))
for idx, model_key in enumerate(dummy_model_keys):
model_img_name = config.MODEL_OUTPUT_IMAGE_NAMES[model_key]
img_model = Image.new('RGB', config.IMAGE_DISPLAY_SIZE, color=colors[idx % len(colors)])
img_model.save(os.path.join(sample_path, model_img_name))
except Exception as e:
print(f"Error creating dummy image: {e}")
print("Dummy data creation complete.")
ALL_SAMPLES_BY_DOMAIN = utils.scan_data_directory(config.DATA_FOLDER)
demo.launch()
import atexit
atexit.register(lambda: scheduler.shutdown() if scheduler.running else None)
|