Spaces:
Running
Running
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/ | |
Usage: | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80) | |
""" | |
from pathlib import Path | |
import torch | |
from models.yolo import Model | |
from utils.general import set_logging | |
from utils.google_utils import attempt_download | |
dependencies = ['torch', 'yaml'] | |
set_logging() | |
def create(name, pretrained, channels, classes, autoshape): | |
"""Creates a specified YOLOv5 model | |
Arguments: | |
name (str): name of model, i.e. 'yolov5s' | |
pretrained (bool): load pretrained weights into the model | |
channels (int): number of input channels | |
classes (int): number of model classes | |
Returns: | |
pytorch model | |
""" | |
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path | |
try: | |
model = Model(config, channels, classes) | |
if pretrained: | |
fname = f'{name}.pt' # checkpoint filename | |
attempt_download(fname) # download if not found locally | |
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load | |
state_dict = ckpt['model'].float().state_dict() # to FP32 | |
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter | |
model.load_state_dict(state_dict, strict=False) # load | |
if len(ckpt['model'].names) == classes: | |
model.names = ckpt['model'].names # set class names attribute | |
if autoshape: | |
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS | |
return model | |
except Exception as e: | |
help_url = 'https://github.com/ultralytics/yolov5/issues/36' | |
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url | |
raise Exception(s) from e | |
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True): | |
"""YOLOv5-small model from https://github.com/ultralytics/yolov5 | |
Arguments: | |
pretrained (bool): load pretrained weights into the model, default=False | |
channels (int): number of input channels, default=3 | |
classes (int): number of model classes, default=80 | |
Returns: | |
pytorch model | |
""" | |
return create('yolov5s', pretrained, channels, classes, autoshape) | |
def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True): | |
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5 | |
Arguments: | |
pretrained (bool): load pretrained weights into the model, default=False | |
channels (int): number of input channels, default=3 | |
classes (int): number of model classes, default=80 | |
Returns: | |
pytorch model | |
""" | |
return create('yolov5m', pretrained, channels, classes, autoshape) | |
def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True): | |
"""YOLOv5-large model from https://github.com/ultralytics/yolov5 | |
Arguments: | |
pretrained (bool): load pretrained weights into the model, default=False | |
channels (int): number of input channels, default=3 | |
classes (int): number of model classes, default=80 | |
Returns: | |
pytorch model | |
""" | |
return create('yolov5l', pretrained, channels, classes, autoshape) | |
def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True): | |
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5 | |
Arguments: | |
pretrained (bool): load pretrained weights into the model, default=False | |
channels (int): number of input channels, default=3 | |
classes (int): number of model classes, default=80 | |
Returns: | |
pytorch model | |
""" | |
return create('yolov5x', pretrained, channels, classes, autoshape) | |
def custom(path_or_model='path/to/model.pt', autoshape=True): | |
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5 | |
Arguments (3 options): | |
path_or_model (str): 'path/to/model.pt' | |
path_or_model (dict): torch.load('path/to/model.pt') | |
path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] | |
Returns: | |
pytorch model | |
""" | |
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint | |
if isinstance(model, dict): | |
model = model['model'] # load model | |
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create | |
hub_model.load_state_dict(model.float().state_dict()) # load state_dict | |
hub_model.names = model.names # class names | |
return hub_model.autoshape() if autoshape else hub_model | |
if __name__ == '__main__': | |
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example | |
# model = custom(path_or_model='path/to/model.pt') # custom example | |
# Verify inference | |
import numpy as np | |
from PIL import Image | |
imgs = [Image.open('data/images/bus.jpg'), # PIL | |
'data/images/zidane.jpg', # filename | |
'https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', # URI | |
np.zeros((640, 480, 3))] # numpy | |
results = model(imgs) # batched inference | |
results.print() | |
results.save() | |