File size: 4,615 Bytes
19f993d
 
 
 
 
 
48b5ec8
19f993d
 
 
 
d2fc011
 
 
 
 
 
 
bfaba1b
d2fc011
 
19f993d
 
f577116
19f993d
 
 
b0d4780
fbf56bb
d2fc011
19f993d
 
 
 
 
 
 
 
96b79f7
 
 
 
d2fc011
19f993d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2fc011
fbf56bb
d2fc011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 17 08:43:48 2023

@author: mritchey
"""
import keras
import streamlit as st
from PIL import Image
import pandas as pd
import numpy as np
from keras import layers  
import matplotlib.pyplot as plt 

def get_img_array(img_path, target_size):
    array = keras.utils.img_to_array(img)
    array = np.expand_dims(array, axis=0)
    return array
    
st.set_page_config(layout="wide")

model_type = st.sidebar.selectbox(
    'Select Model', ('VGG16', 'VGG19', 'ResNet50V2', 'MobileNetV2'))
models = {'VGG16': 'vgg16', 'VGG19': 'vgg19', 'ResNet50V2': 'resnet_v2',
          'MobileNetV2': 'mobilenet_v2'}
model_type2 = models[model_type]

top_n = st.sidebar.selectbox('Number of Results', (3, 5, 10, 100,500))
results = st.sidebar.selectbox('Display Summary', ('No','Yes'))
display = st.sidebar.selectbox('Display Filtered Images', ('No','Yes'))

exec(f'from keras.applications.{model_type2} import {model_type}')
exec(
    f'from keras.applications.{model_type2} import preprocess_input, decode_predictions')
model = eval(f'{model_type}(weights="imagenet")')

img_path = st.file_uploader("Upload Picture")

try:
    img = Image.open(img_path)
except:
    img = Image.open('dog.jpg')


img = img.resize((224, 224))  # Resize to match VGG16 input size
x = np.array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# Make predictions on the image
preds = model.predict(x)
# Convert the predictions to human-readable labels
decoded_preds = decode_predictions(preds, top=top_n)[0]

df = pd.DataFrame(decoded_preds)
df.columns = ['label', 'Object', 'Percent Certainty']
df.index = df.index+1
df = df[['Object', 'Percent Certainty']]
df['Percent Certainty'] = df['Percent Certainty'].apply(
    lambda x: '{:.2%}'.format(x))

# with st.container():

with st.container():
    col1, col2 = st.columns((1,3))
    with col1:
        st.image(img,width=400)
    with col2:
        st.dataframe(df)
        
    
with st.container():
    col1, col2 = st.columns((2, 4))
    if results=='Yes':
        with col1:
            stringlist = []
            model.summary(print_fn=lambda x: stringlist.append(x))
            short_model_summary = "\n".join(stringlist)
            print(short_model_summary)
            st.write(short_model_summary)
    
    
    if display =='Yes':
        img_tensor = get_img_array(img, target_size=(224, 224))
        layer_outputs = []
        layer_names = []
        for layer in model.layers:
            if isinstance(layer, (layers.Conv2D, layers.MaxPooling2D)):
                layer_outputs.append(layer.output)
                layer_names.append(layer.name)
        activation_model = keras.Model(inputs=model.input, outputs=layer_outputs)
        
        activations = activation_model.predict(img_tensor)
        
        first_layer_activation = activations[0]
        
        plt.matshow(first_layer_activation[0, :, :, 5], cmap="viridis")
        
        images_per_row = 16
        all_pngs=[]
        for layer_name, layer_activation in zip(layer_names, activations):
            n_features = layer_activation.shape[-1]
            size = layer_activation.shape[1]
            n_cols = n_features // images_per_row
            display_grid = np.zeros(((size + 1) * n_cols - 1,
                                     images_per_row * (size + 1) - 1))
            for col in range(n_cols):
                for row in range(images_per_row):
                    channel_index = col * images_per_row + row
                    channel_image = layer_activation[0, :, :, channel_index].copy()
                    if channel_image.sum() != 0:
                        channel_image -= channel_image.mean()
                        channel_image /= channel_image.std()
                        channel_image *= 64
                        channel_image += 128
                    channel_image = np.clip(channel_image, 0, 255).astype("uint8")
                    display_grid[
                        col * (size + 1): (col + 1) * size + col,
                        row * (size + 1) : (row + 1) * size + row] = channel_image
            scale = 1. / size
            plt.figure(figsize=(scale * display_grid.shape[1],
                                scale * display_grid.shape[0]))
            plt.title(layer_name)
            plt.grid(False)
            plt.axis("off")
            plt.imshow(display_grid, aspect="auto", cmap="viridis")
            
            filename=f'{layer_name}.png'
            plt.savefig(f'{layer_name}.png')
            all_pngs.append(filename)
        with col2:
            for i in all_pngs: st.image(i)