mattritchey commited on
Commit
cf2cb59
·
1 Parent(s): 5564795

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +165 -0
app.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Fri Nov 11 07:26:42 2022
4
+
5
+ @author: mritchey
6
+ """
7
+ # streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\quick address\quick_address.py"
8
+ import streamlit as st
9
+ from streamlit_folium import st_folium
10
+ import pandas as pd
11
+ import numpy as np
12
+ import folium
13
+ from joblib import Parallel, delayed
14
+
15
+
16
+ @st.cache
17
+ def convert_df(df):
18
+ return df.to_csv(index=0).encode('utf-8')
19
+
20
+
21
+ def map_results(results):
22
+ for index, row in results.iterrows():
23
+ address, sq_ft = results.loc[index,
24
+ 'Address'], results.loc[index, 'Total Area']
25
+ html = f"""<p style="arial"><p style="font-size:14px">
26
+ {address}
27
+ <br> Square Footage: {sq_ft}"""
28
+
29
+ iframe = folium.IFrame(html)
30
+ popup = folium.Popup(iframe,
31
+ min_width=140,
32
+ max_width=140)
33
+
34
+ folium.Marker(location=[results.loc[index, 'Lat'],
35
+ results.loc[index, 'Lon']],
36
+ fill_color='#43d9de',
37
+ popup=popup,
38
+ radius=8).add_to(m)
39
+ return folium
40
+
41
+
42
+ @st.cache
43
+ def get_housing_data(address_input):
44
+ address = address_input.replace(
45
+ ' ', '+').replace(',', '').replace('#+', '').upper()
46
+ try:
47
+ census = pd.read_json(
48
+ f"https://geocoding.geo.census.gov/geocoder/geographies/onelineaddress?address={address}&benchmark=2020&vintage=2020&format=json")
49
+ results = census.iloc[:1, 0][0]
50
+ matchedAddress_first = results[0]['matchedAddress']
51
+ matchedAddress_last = results[-1]['matchedAddress']
52
+ lat, lon = results[0]['coordinates']['y'], results[0]['coordinates']['x']
53
+ # lat2, lon2 = results[-1]['coordinates']['y'], results[-1]['coordinates']['x']
54
+ censusb = pd.DataFrame({'Description': ['Address Input', 'Census Matched Address: First',
55
+ 'Census Matched Address: Last', 'Lat', 'Lon'],
56
+ 'Values': [address_input, matchedAddress_first, matchedAddress_last, lat, lon]})
57
+
58
+ #Property Records
59
+ url = f'https://www.countyoffice.org/property-records-search/?q={address}'
60
+ county_office_list = pd.read_html(url)
61
+
62
+ if county_office_list[1].shape[1] == 2:
63
+ df2 = pd.concat([county_office_list[0], county_office_list[1]])
64
+ else:
65
+ df2 = county_office_list[0]
66
+ df2.columns = ['Description', 'Values']
67
+
68
+ final = censusb.append(df2)
69
+
70
+ #Transpose
71
+ final2 = final.T
72
+ final2.columns = final2.loc['Description']
73
+ final2 = final2.loc[['Values']].set_index('Address Input')
74
+ # final2['County Office Url']=url
75
+ except:
76
+ final2 = address_input
77
+ return final2
78
+
79
+
80
+ @st.cache(allow_output_mutation=True)
81
+ def address_quick(df, n_jobs=128):
82
+ if isinstance(df, pd.DataFrame):
83
+ df = df.drop_duplicates()
84
+ df['address_input'] = df.iloc[:, 0]+', '+df.iloc[:, 1] + \
85
+ ', '+df.iloc[:, 2]+' '+df.iloc[:, 3].astype(str).str[:5]
86
+ df['address'] = df['address_input'].replace(
87
+ {' ': '+', ',': ''}, regex=True).str.upper()
88
+ df['address'] = df['address'].replace({'#+': ''}, regex=True)
89
+ # addresses=df['address'].values
90
+ addresses_input = df['address_input'].values
91
+ else:
92
+ addresses_input = [df]
93
+ results = Parallel(n_jobs=n_jobs, prefer="threads")(
94
+ delayed(get_housing_data)(i) for i in addresses_input)
95
+ results_df = [i for i in results if isinstance(i, pd.DataFrame)]
96
+ results_errors = [i for i in results if not isinstance(i, pd.DataFrame)]
97
+ errors = pd.DataFrame({'Error Addresses': results_errors})
98
+ final_results = pd.concat(results_df)
99
+ final_results = final_results[final_results.columns[2:]].copy()
100
+
101
+ return final_results, errors
102
+
103
+
104
+ st.set_page_config(layout="wide")
105
+ col1, col2 = st.columns((2))
106
+
107
+ address = st.sidebar.text_input(
108
+ "Address", "1500 MOHICAN DR, FORESTDALE, AL, 35214")
109
+ uploaded_file = st.sidebar.file_uploader("Choose a file")
110
+ uploaded_file = 'C:/Users/mritchey/addresses_sample.csv'
111
+ address_file = st.sidebar.radio('Choose',
112
+ ('Single Address', 'Addresses (Geocode: Will take a bit)'))
113
+
114
+
115
+ if address_file == 'Addresses (Geocode: Will take a bit)':
116
+ try:
117
+ df = pd.read_csv(uploaded_file)
118
+ cols = df.columns.to_list()[:4]
119
+ with st.spinner("Getting Data: Hang On..."):
120
+ results, errors = address_quick(df[cols])
121
+
122
+ except:
123
+ st.header('Make Sure File is Loaded First and then hit "Addresses"')
124
+
125
+ else:
126
+ results, errors = address_quick(address)
127
+
128
+ m = folium.Map(location=[39.50, -98.35], zoom_start=3)
129
+
130
+
131
+ with col1:
132
+ st.title('Addresses')
133
+ map_results(results)
134
+ st_folium(m, height=500, width=500)
135
+
136
+ with col2:
137
+ st.title('Results')
138
+ results.index = np.arange(1, len(results) + 1)
139
+ st.dataframe(results)
140
+ csv = convert_df(results)
141
+ st.download_button(
142
+ label="Download data as CSV",
143
+ data=csv,
144
+ file_name='Results.csv',
145
+ mime='text/csv')
146
+ try:
147
+ if errors.shape[0] > 0:
148
+
149
+ st.header('Errors')
150
+ errors.index = np.arange(1, len(errors) + 1)
151
+ st.dataframe(errors)
152
+ # st.table(errors.assign(hack='').set_index('hack'))
153
+ csv2 = convert_df(errors)
154
+ st.download_button(
155
+ label="Download Errors as CSV",
156
+ data=csv2,
157
+ file_name='Errors.csv',
158
+ mime='text/csv')
159
+ except:
160
+ pass
161
+
162
+ st.markdown(""" <style>
163
+ #MainMenu {visibility: hidden;}
164
+ footer {visibility: hidden;}
165
+ </style> """, unsafe_allow_html=True)