Spaces:
Runtime error
Runtime error
File size: 7,593 Bytes
ace7fa1 cf71f89 ace7fa1 a83ff64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
folium.raster_layers.ImageOverlay(
data, opacity=0.8, bounds=bounds).add_to(m)
return m
def to_radians(degrees):
return degrees * math.pi / 180
def lat_lon_to_bounds(lat, lng, zoom, width, height):
earth_cir_m = 40075016.686
degreesPerMeter = 360 / earth_cir_m
m_pixel_ew = earth_cir_m / math.pow(2, zoom + 8)
m_pixel_ns = earth_cir_m / \
math.pow(2, zoom + 8) * math.cos(to_radians(lat))
shift_m_ew = width/2 * m_pixel_ew
shift_m_ns = height/2 * m_pixel_ns
shift_deg_ew = shift_m_ew * degreesPerMeter
shift_deg_ns = shift_m_ns * degreesPerMeter
return [[lat-shift_deg_ns, lng-shift_deg_ew], [lat+shift_deg_ns, lng+shift_deg_ew]]
def image_to_geotiff(bounds, input_file_path, output_file_path='template.tiff'):
south, west, north, east = tuple(
[item for sublist in bounds for item in sublist])
dataset = rasterio.open(input_file_path, 'r')
bands = [1, 2, 3]
data = dataset.read(bands)
transform = rasterio.transform.from_bounds(west, south, east, north,
height=data.shape[1],
width=data.shape[2])
crs = {'init': 'epsg:4326'}
with rasterio.open(output_file_path, 'w', driver='GTiff',
height=data.shape[1],
width=data.shape[2],
count=3, dtype=data.dtype, nodata=0,
transform=transform, crs=crs,
compress='lzw') as dst:
dst.write(data, indexes=bands)
def get_mask(bounds, buffer_size):
year, month, day = date[:4], date[4:6], date[6:]
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
img_data = requests.get(url, verify=False).content
input_file_path = f'image_name_{date}_{var}.png'
output_file_path = 'template.tiff'
with open(input_file_path, 'wb') as handler:
handler.write(img_data)
image_to_geotiff(bounds, input_file_path, output_file_path)
rds = rioxarray.open_rasterio(output_file_path)
# rds.plot.imshow()
rds = rds.assign_coords(distance=(haversine(rds.x, rds.y, lon, lat)))
mask = rds['distance'].values <= buffer_size
mask = np.transpose(np.stack([mask, mask, mask]), (1, 2, 0))
return mask
def haversine(lon1, lat1, lon2, lat2):
# convert decimal degrees to radians
lon1 = np.deg2rad(lon1)
lon2 = np.deg2rad(lon2)
lat1 = np.deg2rad(lat1)
lat2 = np.deg2rad(lat2)
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
r = 6371
return c * r
#Set Columns
st.set_page_config(layout="wide")
col1, col2, col3 = st.columns((3))
col1, col2, col3 = st.columns((3, 3, 1))
#Input Data
zoom = 10
_ = st.sidebar.text_input(
"Claim Number", "836-xxxxxxx")
address = st.sidebar.text_input(
"Address", "1000 Main St, Cincinnati, OH 45202")
date = st.sidebar.date_input("Date", pd.Timestamp(
2022, 7, 6), key='date').strftime('%Y%m%d')
d = pd.Timestamp(date)
days_within = st.sidebar.selectbox('Within Days:', (5, 30, 60, 90, 180))
var = 'Hail'
var_input = 'hails&product=MESHMAX1440M'
mask_select = st.sidebar.radio('Only Show Buffer Data:', ("No", "Yes"))
buffer_size = st.sidebar.radio('Buffer Size (miles):', (5, 10, 15))
year, month, day = date[:4], date[4:6], date[6:]
hour = 23
minute = 30
prod_root = var_input[var_input.find('=')+1:]
#Geocode
gdf = geocode(address, buffer_size)
lat, lon = tuple(gdf[['Lat', 'Lon']].values[0])
#Get Value
url = 'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/get_multi_domain_rect_binary_value.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/'\
+ f'&prod_root={prod_root}&lon={lon}&lat={lat}&year={year}&month={month}&day={day}&hour={hour}&minute={minute}'
response = requests.get(url, verify=False).json()
qvs_values = pd.DataFrame(response, index=[0])[
['qvs_value', 'qvs_units']].values[0]
qvs_value = qvs_values[0]
qvs_unit = qvs_values[1]
#Get PNG Focus
data = png_data(date)
#Legend
legend = Image.open('hail scale3b.png')
#Get PNG Max
start_date, end_date = d - \
pd.Timedelta(days=days_within), d+pd.Timedelta(days=days_within)
dates = pd.date_range(start_date,
end_date).strftime('%Y%m%d')
lut = pd.read_csv('hail scale.csv')
bounds = lat_lon_to_bounds(lat, lon, zoom, 920, 630)
results1 = get_pngs_parallel(dates)
# results1 = Parallel(n_jobs=32, prefer="threads")(delayed(get_pngs)(i) for i in dates)
results = pd.concat(results1)
max_data = results.groupby('index')[['Hail Scale']].max()
max_data2 = pd.merge(max_data,
lut[['R', 'G', 'B', 'Hail Scale']],
on=['Hail Scale'],
how='left')[['R', 'G', 'B']]
data_max = max_data2.values.reshape(630, 920, 3)
#Masked Data
if mask_select == "Yes":
mask = get_mask(bounds, buffer_size)
mask1 = mask[:, :, 0].reshape(630*920)
results = pd.concat([i[mask1] for i in results1])
data_max = data_max*mask
else:
pass
#Bar
bar = results.query("`Hail Scale`>4").groupby(
['Date', 'Hail Scale In'])['index'].count().reset_index()
bar['Date'] = pd.to_datetime(bar['Date'])
bar = bar.reset_index()
bar.columns = ['level_0', 'Date', 'Hail Scale In', 'count']
bar['Hail Scale In'] = bar['Hail Scale In'].astype(str)
bar = bar.sort_values('Hail Scale In', ascending=True)
color_discrete_map = lut[['Hail Scale In', 'c_code']].sort_values(
'Hail Scale In', ascending=True).astype(str)
color_discrete_map = color_discrete_map.set_index(
'Hail Scale In').to_dict()['c_code']
fig = px.bar(bar, x="Date", y="count", color="Hail Scale In",
barmode='stack',
color_discrete_map=color_discrete_map)
#Submit Url to New Tab
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/index.php?web_exec_mode=run&menu=menu_config.txt&year={year}&month={month}&day={day}&hour=23&minute=30&time_mode=static&zoom=9&clon={lon}&clat={lat}&base=0&overlays=1&mping_mode=0&product_type={var_input}&qpe_pal_option=0&opacity=.75&looping_active=off&num_frames=6&frame_step=200&seconds_step=600'
#Map Focus
m = map_folium(data, gdf)
#Map Max
m_max = map_folium(data_max, gdf)
with st.container():
col1, col2, col3 = st.columns((1, 2, 2))
with col1:
link = f'[Go To MRMS Site]({url})'
st.markdown(link, unsafe_allow_html=True)
st.image(legend)
with col2:
st.header(f'{var} on {pd.Timestamp(date).strftime("%D")}')
st_folium(m, height=300)
with col3:
st.header(
f'Max from {start_date.strftime("%D")} to {end_date.strftime("%D")}')
st_folium(m_max, height=300)
try:
selected_points = plotly_events(fig, click_event=True, hover_event=False)
date2 = pd.Timestamp(selected_points[0]['x']).strftime('%Y%m%d')
data2 = png_data(date2)
m3 = map_folium(data2, gdf)
st.header(f'{var} on {pd.Timestamp(date2).strftime("%D")}')
st_folium(m3, height=300)
except:
pass
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True) |