File size: 7,593 Bytes
ace7fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf71f89
ace7fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83ff64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    folium.raster_layers.ImageOverlay(
        data, opacity=0.8, bounds=bounds).add_to(m)
    return m


def to_radians(degrees):
  return degrees * math.pi / 180


def lat_lon_to_bounds(lat, lng, zoom, width, height):
    earth_cir_m = 40075016.686
    degreesPerMeter = 360 / earth_cir_m
    m_pixel_ew = earth_cir_m / math.pow(2, zoom + 8)
    m_pixel_ns = earth_cir_m / \
        math.pow(2, zoom + 8) * math.cos(to_radians(lat))

    shift_m_ew = width/2 * m_pixel_ew
    shift_m_ns = height/2 * m_pixel_ns

    shift_deg_ew = shift_m_ew * degreesPerMeter
    shift_deg_ns = shift_m_ns * degreesPerMeter

    return [[lat-shift_deg_ns, lng-shift_deg_ew], [lat+shift_deg_ns, lng+shift_deg_ew]]


def image_to_geotiff(bounds, input_file_path, output_file_path='template.tiff'):
    south, west, north, east = tuple(
        [item for sublist in bounds for item in sublist])
    dataset = rasterio.open(input_file_path, 'r')
    bands = [1, 2, 3]
    data = dataset.read(bands)
    transform = rasterio.transform.from_bounds(west, south, east, north,
                                               height=data.shape[1],
                                               width=data.shape[2])
    crs = {'init': 'epsg:4326'}

    with rasterio.open(output_file_path, 'w', driver='GTiff',
                       height=data.shape[1],
                       width=data.shape[2],
                       count=3, dtype=data.dtype, nodata=0,
                       transform=transform, crs=crs,
                       compress='lzw') as dst:
        dst.write(data, indexes=bands)


def get_mask(bounds, buffer_size):
    year, month, day = date[:4], date[4:6], date[6:]
    url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
    img_data = requests.get(url, verify=False).content
    input_file_path = f'image_name_{date}_{var}.png'
    output_file_path = 'template.tiff'
    with open(input_file_path, 'wb') as handler:
        handler.write(img_data)

    image_to_geotiff(bounds, input_file_path, output_file_path)
    rds = rioxarray.open_rasterio(output_file_path)
    # rds.plot.imshow()

    rds = rds.assign_coords(distance=(haversine(rds.x, rds.y, lon, lat)))
    mask = rds['distance'].values <= buffer_size
    mask = np.transpose(np.stack([mask, mask, mask]), (1, 2, 0))
    return mask


def haversine(lon1, lat1, lon2, lat2):
    # convert decimal degrees to radians
    lon1 = np.deg2rad(lon1)
    lon2 = np.deg2rad(lon2)
    lat1 = np.deg2rad(lat1)
    lat2 = np.deg2rad(lat2)

    # haversine formula
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
    c = 2 * np.arcsin(np.sqrt(a))
    r = 6371
    return c * r


#Set Columns
st.set_page_config(layout="wide")
col1, col2, col3 = st.columns((3))
col1, col2, col3 = st.columns((3, 3, 1))

#Input Data
zoom = 10
_ = st.sidebar.text_input(
    "Claim Number", "836-xxxxxxx")
address = st.sidebar.text_input(
    "Address", "1000 Main St, Cincinnati, OH 45202")

date = st.sidebar.date_input("Date",  pd.Timestamp(
    2022, 7, 6), key='date').strftime('%Y%m%d')
d = pd.Timestamp(date)
days_within = st.sidebar.selectbox('Within Days:', (5, 30, 60, 90, 180))
var = 'Hail'
var_input = 'hails&product=MESHMAX1440M'
mask_select = st.sidebar.radio('Only Show Buffer Data:', ("No", "Yes"))
buffer_size = st.sidebar.radio('Buffer Size (miles):', (5, 10, 15))

year, month, day = date[:4], date[4:6], date[6:]
hour = 23
minute = 30

prod_root = var_input[var_input.find('=')+1:]

#Geocode
gdf = geocode(address, buffer_size)
lat, lon = tuple(gdf[['Lat', 'Lon']].values[0])

#Get Value
url = 'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/get_multi_domain_rect_binary_value.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/'\
    + f'&prod_root={prod_root}&lon={lon}&lat={lat}&year={year}&month={month}&day={day}&hour={hour}&minute={minute}'

response = requests.get(url, verify=False).json()
qvs_values = pd.DataFrame(response, index=[0])[
    ['qvs_value', 'qvs_units']].values[0]
qvs_value = qvs_values[0]
qvs_unit = qvs_values[1]

#Get PNG Focus
data = png_data(date)

#Legend
legend = Image.open('hail scale3b.png')

#Get PNG Max
start_date, end_date = d - \
    pd.Timedelta(days=days_within), d+pd.Timedelta(days=days_within)
dates = pd.date_range(start_date,
                      end_date).strftime('%Y%m%d')
lut = pd.read_csv('hail scale.csv')
bounds = lat_lon_to_bounds(lat, lon, zoom, 920, 630)


results1 = get_pngs_parallel(dates)
# results1 = Parallel(n_jobs=32, prefer="threads")(delayed(get_pngs)(i) for i in dates)
results = pd.concat(results1)
max_data = results.groupby('index')[['Hail Scale']].max()

max_data2 = pd.merge(max_data,
                     lut[['R', 'G', 'B', 'Hail Scale']],
                     on=['Hail Scale'],
                     how='left')[['R', 'G', 'B']]

data_max = max_data2.values.reshape(630, 920, 3)

#Masked Data
if mask_select == "Yes":
    mask = get_mask(bounds, buffer_size)
    mask1 = mask[:, :, 0].reshape(630*920)
    results = pd.concat([i[mask1] for i in results1])
    data_max = data_max*mask
else:
    pass


#Bar
bar = results.query("`Hail Scale`>4").groupby(
    ['Date', 'Hail Scale In'])['index'].count().reset_index()
bar['Date'] = pd.to_datetime(bar['Date'])

bar = bar.reset_index()
bar.columns = ['level_0', 'Date', 'Hail Scale In', 'count']
bar['Hail Scale In'] = bar['Hail Scale In'].astype(str)
bar = bar.sort_values('Hail Scale In', ascending=True)

color_discrete_map = lut[['Hail Scale In', 'c_code']].sort_values(
    'Hail Scale In', ascending=True).astype(str)
color_discrete_map = color_discrete_map.set_index(
    'Hail Scale In').to_dict()['c_code']

fig = px.bar(bar, x="Date", y="count", color="Hail Scale In",
             barmode='stack',
             color_discrete_map=color_discrete_map)

#Submit Url to New Tab
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/index.php?web_exec_mode=run&menu=menu_config.txt&year={year}&month={month}&day={day}&hour=23&minute=30&time_mode=static&zoom=9&clon={lon}&clat={lat}&base=0&overlays=1&mping_mode=0&product_type={var_input}&qpe_pal_option=0&opacity=.75&looping_active=off&num_frames=6&frame_step=200&seconds_step=600'

#Map Focus
m = map_folium(data, gdf)
#Map Max
m_max = map_folium(data_max, gdf)

with st.container():
    col1, col2, col3 = st.columns((1, 2, 2))
    with col1:
        link = f'[Go To MRMS Site]({url})'
        st.markdown(link, unsafe_allow_html=True)
        st.image(legend)
    with col2:
        st.header(f'{var} on {pd.Timestamp(date).strftime("%D")}')
        st_folium(m, height=300)
    with col3:
        st.header(
            f'Max from {start_date.strftime("%D")} to {end_date.strftime("%D")}')
        st_folium(m_max, height=300)

try:
    selected_points = plotly_events(fig, click_event=True, hover_event=False)
    date2 = pd.Timestamp(selected_points[0]['x']).strftime('%Y%m%d')
    data2 = png_data(date2)
    m3 = map_folium(data2, gdf)
    st.header(f'{var} on {pd.Timestamp(date2).strftime("%D")}')
    st_folium(m3, height=300)
except:
    pass


st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)