onnx-export / app.py
mav23's picture
Create app.py
1e7dfc2 verified
import csv
import os
from datetime import datetime
from typing import Optional, Union
import gradio as gr
from huggingface_hub import HfApi, Repository
from onnx_export import convert
from apscheduler.schedulers.background import BackgroundScheduler
DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_WRITE_TOKEN")
DATADIR = "exporters_data"
repo: Optional[Repository] = None
# if HF_TOKEN:
# repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)
def onnx_export(token: str, model_id: str, task: str, opset: Union[int, str]) -> str:
if token == "" or model_id == "":
return """
### Invalid input 🐞
Please fill a token and model name.
"""
try:
if opset == "":
opset = None
else:
opset = int(opset)
api = HfApi(token=token)
error, commit_info = convert(api=api, model_id=model_id, task=task, opset=opset)
if error != "0":
return error
print("[commit_info]", commit_info)
# save in a private dataset
if repo is not None:
repo.git_pull(rebase=True)
with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile:
writer = csv.DictWriter(
csvfile, fieldnames=["model_id", "pr_url", "time"]
)
writer.writerow(
{
"model_id": model_id,
"pr_url": commit_info.pr_url,
"time": str(datetime.now()),
}
)
commit_url = repo.push_to_hub()
print("[dataset]", commit_url)
pr_revision = commit_info.pr_revision.replace("/", "%2F")
return f"#### This model was successfully exported and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url}). If you would like to use the exported model without waiting for the PR to be approved, head to https://huggingface.co/{model_id}/tree/{pr_revision}"
except Exception as e:
return f"#### Error: {e}"
TTILE_IMAGE = """
<div
style="
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
"
>
<img src="https://i.ibb.co/m5VnjSsQ/Blue-and-White-Illustrative-Profile-Twitter-Header.png"/>
</div>
"""
TITLE = """
<div
style="
display: inline-flex;
align-items: center;
text-align: center;
max-width: 1400px;
gap: 0.8rem;
font-size: 2.2rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;">
Export transformers model to ONNX with HF Optimum exporters.
</h1>
</div>
"""
# for some reason https://huggingface.co/settings/tokens is not showing as a link by default?
DESCRIPTION = """
This Space enables automatic export of Hugging Face transformers PyTorch models to [ONNX](https://onnx.ai/). It creates a pull request on the target model repository, allowing model owners to review and merge the ONNX export, making their models accessible across a wide range of devices and platforms.
Once exported, the model can be seamlessly integrated with [HF Optimum](https://huggingface.co/docs/optimum/), maintaining compatibility with the transformers API. For detailed implementation, check out [this comprehensive guide](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models).
Quick Start Guide:
1. Obtain a read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens) (read access is sufficient for PR creation)
2. Enter a model ID from the Hub (e.g., [textattack/distilbert-base-cased-CoLA](https://huggingface.co/textattack/distilbert-base-cased-CoLA))
3. Click "Export to ONNX"
4. Done! You'll receive feedback on the export status and, if successful, the URL of the created pull request
Important Note: For models exceeding 2 GB, the ONNX export will be saved in an `onnx/` subfolder. When loading such models with Optimum, remember to include the `subfolder="onnx"` parameter."""
with gr.Blocks() as demo:
gr.HTML(TTILE_IMAGE)
gr.HTML(TITLE)
with gr.Row():
with gr.Column(scale=50):
gr.Markdown(DESCRIPTION)
with gr.Column(scale=50):
input_token = gr.Textbox(
max_lines=1,
label="Hugging Face token",
)
input_model = gr.Textbox(
max_lines=1,
label="Model name",
placeholder="textattack/distilbert-base-cased-CoLA",
)
input_task = gr.Textbox(
value="auto",
max_lines=1,
label='Task (can be left to "auto", will be automatically inferred)',
)
onnx_opset = gr.Textbox(
placeholder="for example 14, can be left blank",
max_lines=1,
label="ONNX opset (optional, can be left blank)",
)
btn = gr.Button("Export to ONNX")
output = gr.Markdown(label="Output")
btn.click(
fn=onnx_export,
inputs=[input_token, input_model, input_task, onnx_opset],
outputs=output,
)
def restart_space():
HfApi().restart_space(repo_id="onnx/export", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
demo.launch()