Spaces:
Runtime error
Runtime error
File size: 3,958 Bytes
cffa665 fc84b02 cffa665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageFilter
import io
import time
import os
import copy
import pickle
import datetime
import urllib.request
import gradio as gr
import torch
# from mim import install
# install('mmcv-full')
# install('mmengine')
# install('mmdet')
from mmocr.apis import MMOCRInferencer
ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
# url = (
# "https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg"
# )
# path_input = "./cat.jpg"
# urllib.request.urlretrieve(url, filename=path_input)
# url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg"
# path_input = "./dog.jpg"
# urllib.request.urlretrieve(url, filename=path_input)
# model = keras_model(weights="imagenet")
# n_steps = 50
# method = "gausslegendre"
# internal_batch_size = 50
# ig = IntegratedGradients(
# model, n_steps=n_steps, method=method, internal_batch_size=internal_batch_size
# )
# def do_process(img, baseline):
# instance = image.img_to_array(img)
# instance = np.expand_dims(instance, axis=0)
# instance = preprocess_input(instance)
# preds = model.predict(instance)
# lstPreds = decode_predictions(preds, top=3)[0]
# dctPreds = {
# lstPreds[i][1]: round(float(lstPreds[i][2]), 2) for i in range(len(lstPreds))
# }
# predictions = preds.argmax(axis=1)
# if baseline == "white":
# baselines = bls = np.ones(instance.shape).astype(instance.dtype)
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
# elif baseline == "black":
# baselines = bls = np.zeros(instance.shape).astype(instance.dtype)
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
# elif baseline == "blur":
# img_flt = img.filter(ImageFilter.GaussianBlur(5))
# baselines = image.img_to_array(img_flt)
# baselines = np.expand_dims(baselines, axis=0)
# baselines = preprocess_input(baselines)
# else:
# baselines = np.random.random_sample(instance.shape).astype(instance.dtype)
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
# explanation = ig.explain(instance, baselines=baselines, target=predictions)
# attrs = explanation.attributions[0]
# fig, ax = visualize_image_attr(
# attr=attrs.squeeze(),
# original_image=img,
# method="blended_heat_map",
# sign="all",
# show_colorbar=True,
# title=baseline,
# plt_fig_axis=None,
# use_pyplot=False,
# )
# fig.tight_layout()
# buf = io.BytesIO()
# fig.savefig(buf)
# buf.seek(0)
# img_res = Image.open(buf)
# return img_res, img_flt, dctPreds
# input_im = gr.inputs.Image(
# shape=(224, 224), image_mode="RGB", invert_colors=False, source="upload", type="pil"
# )
# input_drop = gr.inputs.Dropdown(
# label="Baseline (default: random)",
# choices=["random", "black", "white", "blur"],
# default="random",
# type="value",
# )
# output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil")
# output_base = gr.outputs.Image(label="Baseline image", type="pil")
# output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
# title = "XAI - Integrated gradients"
# description = "Playground: Integrated gradients for a ResNet model trained on Imagenet dataset. Tools: Alibi, TF, Gradio."
# examples = [["./cat.jpg", "blur"], ["./dog.jpg", "random"]]
# article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
# iface = gr.Interface(
# fn=do_process,
# inputs=[input_im, input_drop],
# outputs=[output_img, output_base, output_label],
# live=False,
# interpretation=None,
# title=title,
# description=description,
# article=article,
# examples=examples,
# )
# iface.launch(debug=True)
|