Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image, ImageFilter | |
import io | |
import time | |
import os | |
import copy | |
import pickle | |
import datetime | |
import urllib.request | |
import gradio as gr | |
import torch | |
# from mim import install | |
# install('mmcv-full') | |
# install('mmengine') | |
# install('mmdet') | |
from mmocr.apis import MMOCRInferencer | |
ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision') | |
# url = ( | |
# "https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg" | |
# ) | |
# path_input = "./cat.jpg" | |
# urllib.request.urlretrieve(url, filename=path_input) | |
# url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg" | |
# path_input = "./dog.jpg" | |
# urllib.request.urlretrieve(url, filename=path_input) | |
# model = keras_model(weights="imagenet") | |
# n_steps = 50 | |
# method = "gausslegendre" | |
# internal_batch_size = 50 | |
# ig = IntegratedGradients( | |
# model, n_steps=n_steps, method=method, internal_batch_size=internal_batch_size | |
# ) | |
# def do_process(img, baseline): | |
# instance = image.img_to_array(img) | |
# instance = np.expand_dims(instance, axis=0) | |
# instance = preprocess_input(instance) | |
# preds = model.predict(instance) | |
# lstPreds = decode_predictions(preds, top=3)[0] | |
# dctPreds = { | |
# lstPreds[i][1]: round(float(lstPreds[i][2]), 2) for i in range(len(lstPreds)) | |
# } | |
# predictions = preds.argmax(axis=1) | |
# if baseline == "white": | |
# baselines = bls = np.ones(instance.shape).astype(instance.dtype) | |
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255)) | |
# elif baseline == "black": | |
# baselines = bls = np.zeros(instance.shape).astype(instance.dtype) | |
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255)) | |
# elif baseline == "blur": | |
# img_flt = img.filter(ImageFilter.GaussianBlur(5)) | |
# baselines = image.img_to_array(img_flt) | |
# baselines = np.expand_dims(baselines, axis=0) | |
# baselines = preprocess_input(baselines) | |
# else: | |
# baselines = np.random.random_sample(instance.shape).astype(instance.dtype) | |
# img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255)) | |
# explanation = ig.explain(instance, baselines=baselines, target=predictions) | |
# attrs = explanation.attributions[0] | |
# fig, ax = visualize_image_attr( | |
# attr=attrs.squeeze(), | |
# original_image=img, | |
# method="blended_heat_map", | |
# sign="all", | |
# show_colorbar=True, | |
# title=baseline, | |
# plt_fig_axis=None, | |
# use_pyplot=False, | |
# ) | |
# fig.tight_layout() | |
# buf = io.BytesIO() | |
# fig.savefig(buf) | |
# buf.seek(0) | |
# img_res = Image.open(buf) | |
# return img_res, img_flt, dctPreds | |
# input_im = gr.inputs.Image( | |
# shape=(224, 224), image_mode="RGB", invert_colors=False, source="upload", type="pil" | |
# ) | |
# input_drop = gr.inputs.Dropdown( | |
# label="Baseline (default: random)", | |
# choices=["random", "black", "white", "blur"], | |
# default="random", | |
# type="value", | |
# ) | |
# output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil") | |
# output_base = gr.outputs.Image(label="Baseline image", type="pil") | |
# output_label = gr.outputs.Label(label="Classification results", num_top_classes=3) | |
# title = "XAI - Integrated gradients" | |
# description = "Playground: Integrated gradients for a ResNet model trained on Imagenet dataset. Tools: Alibi, TF, Gradio." | |
# examples = [["./cat.jpg", "blur"], ["./dog.jpg", "random"]] | |
# article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>" | |
# iface = gr.Interface( | |
# fn=do_process, | |
# inputs=[input_im, input_drop], | |
# outputs=[output_img, output_base, output_label], | |
# live=False, | |
# interpretation=None, | |
# title=title, | |
# description=description, | |
# article=article, | |
# examples=examples, | |
# ) | |
# iface.launch(debug=True) | |