File size: 9,959 Bytes
6c74986
 
 
 
 
 
 
 
b5ccc63
6c74986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5ccc63
6c74986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5ccc63
6c74986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import random
from pathlib import Path

import cv2
import gradio as gr
import numpy as np
import SimpleITK
from huggingface_hub import hf_hub_download, list_repo_files
from scipy import ndimage

IMAGES_REPO = "LMUK-RADONC-PHYS-RES/TrackRAD2025"
DATASET_REPO_TYPE = "dataset"
LABELED_FOLDER = "trackrad2025_labeled_training_data"

OUT_DIR = Path("tmp/videos")


def get_images() -> list[str]:
    images_repo_files = list_repo_files(
        repo_id=IMAGES_REPO,
        repo_type=DATASET_REPO_TYPE,
    )
    image_files = [
        fname
        for fname in images_repo_files
        if fname.startswith(LABELED_FOLDER) and fname.endswith("frames.mha")
    ]
    return image_files


def download_image_files(image_file: str) -> dict[str, str]:
    filename = image_file.split("/")[-1]
    patient = filename.rsplit("_", 1)[0]  # e.g., "A_033_frames.mha" -> "A_033"
    frames_idx = ""
    frames_file = hf_hub_download(
        repo_id=IMAGES_REPO,
        repo_type=DATASET_REPO_TYPE,
        filename=f"{LABELED_FOLDER}/{patient}/images/{patient}_frames{frames_idx}.mha",
    )
    labels_file = hf_hub_download(
        repo_id=IMAGES_REPO,
        repo_type=DATASET_REPO_TYPE,
        filename=f"{LABELED_FOLDER}/{patient}/targets/{patient}_labels{frames_idx}.mha",
    )
    field_strength_file = hf_hub_download(
        repo_id=IMAGES_REPO,
        repo_type=DATASET_REPO_TYPE,
        filename=f"{LABELED_FOLDER}/{patient}/b-field-strength.json",
    )
    scanned_region_file = hf_hub_download(
        repo_id=IMAGES_REPO,
        repo_type=DATASET_REPO_TYPE,
        filename=f"{LABELED_FOLDER}/{patient}/scanned-region{frames_idx}.json",
    )
    frame_rate_file = hf_hub_download(
        repo_id=IMAGES_REPO,
        repo_type=DATASET_REPO_TYPE,
        filename=f"{LABELED_FOLDER}/{patient}/frame-rate{frames_idx}.json",
    )
    return {
        "frames_file": frames_file,
        "labels_file": labels_file,
        "field_strength_file": field_strength_file,
        "scanned_region_file": scanned_region_file,
        "frame_rate_file": frame_rate_file,
    }


def overlay_labels_on_frames(
    frames_array, labels_array, overlay_color="cyan", alpha=1.0
):
    """
    Overlay binary labels on grayscale frames with a bright color.

    Parameters:
    -----------
    frames_array : numpy.ndarray
        Grayscale image sequence of shape [X, Y, T]
    labels_array : numpy.ndarray
        Binary labels of shape [X, Y, T]
    overlay_color : str or tuple
        Color for the overlay ('red', 'green', 'blue', 'yellow', 'cyan', 'magenta')
        or RGB tuple (r, g, b) with values 0-1
    alpha : float
        Transparency of the overlay (0=transparent, 1=opaque)

    Returns:
    --------
    overlaid_frames : numpy.ndarray
        RGB frames with labels overlaid, shape [X, Y, T, 3]
    """

    # Normalize frames to 0-1 range if not already
    frames_norm = frames_array.astype(np.float32)
    if frames_norm.max() > 1.0:
        frames_norm = frames_norm / frames_norm.max()

    # Convert grayscale to RGB by repeating across 3 channels
    rgb_frames = np.stack([frames_norm] * 3, axis=-1)  # Shape: [X, Y, T, 3]

    # Define color mapping
    color_map = {
        "green": (0.0, 1.0, 0.0),
        "blue": (0.0, 0.0, 1.0),
        "yellow": (1.0, 1.0, 0.0),
        "cyan": (0.0, 1.0, 1.0),
        "magenta": (1.0, 0.0, 1.0),
    }

    if overlay_color in color_map:
        r, g, b = color_map[overlay_color]
    else:
        raise ValueError(
            f"Unknown color '{overlay_color}'. Use: {list(color_map.keys())} or RGB tuple"
        )

    # Create the overlaid frames
    overlaid_frames = rgb_frames.copy()

    # Apply overlay where labels are True (assuming binary labels are 0/1 or False/True)
    mask = (ndimage.binary_erosion(labels_array) ^ labels_array).astype(bool)

    # Blend the colors using alpha blending
    overlaid_frames[mask, 0] = (1 - alpha) * rgb_frames[mask, 0] + alpha * r
    overlaid_frames[mask, 1] = (1 - alpha) * rgb_frames[mask, 1] + alpha * g
    overlaid_frames[mask, 2] = (1 - alpha) * rgb_frames[mask, 2] + alpha * b

    return overlaid_frames


def overlay_video(files: dict[str, str]):
    frames = SimpleITK.ReadImage(files["frames_file"])
    frames_array = SimpleITK.GetArrayFromImage(frames)
    # frames_array = [X,Y,T]
    frames_array = np.flip(frames_array, axis=0)

    labels = SimpleITK.ReadImage(files["labels_file"])
    labels_array = SimpleITK.GetArrayFromImage(labels)
    # labels_array = [X,Y,T]
    labels_array = np.flip(labels_array, axis=0)

    overlaid_array = overlay_labels_on_frames(frames_array, labels_array)
    output_path = numpy_to_video_opencv(overlaid_array, "tmp_video", fps=8)
    return output_path


def numpy_to_video_opencv(array: np.ndarray, output_prefix: str, fps: int) -> str:
    limit = 10 * fps
    array_clip = array[:, :, :limit]  # 10s of video
    p99: float = np.percentile(array_clip, 99)  # type: ignore
    array_clip_normalized = cv2.convertScaleAbs(array_clip, alpha=(255.0 / p99))

    OUT_DIR.mkdir(parents=True, exist_ok=True)
    output_path = str((OUT_DIR / output_prefix).with_suffix(".webm"))

    # Define codec and create VideoWriter
    # VP90 is supported by browsers and is available in the pip-installed opencv
    fourcc = cv2.VideoWriter.fourcc(*"VP90")
    X, Y, T, _ = array_clip.shape
    bgr_frames = array_clip_normalized[:, :, :, [2, 1, 0]]
    out = cv2.VideoWriter(output_path, fourcc, fps, (X, Y))
    # Write frames
    for t in range(T):
        frame = bgr_frames[:, :, t, :]
        # OpenCV expects frames in BGR format, but for grayscale we can use as-is
        out.write(frame)

    out.release()
    return output_path


choices = [
    "trackrad2025_labeled_training_data/A_001/images/A_001_frames.mha",
    "trackrad2025_labeled_training_data/A_003/images/A_003_frames.mha",
    "trackrad2025_labeled_training_data/A_004/images/A_004_frames.mha",
    "trackrad2025_labeled_training_data/A_005/images/A_005_frames.mha",
    "trackrad2025_labeled_training_data/A_006/images/A_006_frames.mha",
    "trackrad2025_labeled_training_data/A_007/images/A_007_frames.mha",
    "trackrad2025_labeled_training_data/A_008/images/A_008_frames.mha",
    "trackrad2025_labeled_training_data/A_010/images/A_010_frames.mha",
    "trackrad2025_labeled_training_data/A_011/images/A_011_frames.mha",
    "trackrad2025_labeled_training_data/A_012/images/A_012_frames.mha",
    "trackrad2025_labeled_training_data/A_013/images/A_013_frames.mha",
    "trackrad2025_labeled_training_data/A_014/images/A_014_frames.mha",
    "trackrad2025_labeled_training_data/A_016/images/A_016_frames.mha",
    "trackrad2025_labeled_training_data/A_019/images/A_019_frames.mha",
    "trackrad2025_labeled_training_data/A_020/images/A_020_frames.mha",
    "trackrad2025_labeled_training_data/A_021/images/A_021_frames.mha",
    "trackrad2025_labeled_training_data/A_022/images/A_022_frames.mha",
    "trackrad2025_labeled_training_data/A_023/images/A_023_frames.mha",
    "trackrad2025_labeled_training_data/A_024/images/A_024_frames.mha",
    "trackrad2025_labeled_training_data/A_025/images/A_025_frames.mha",
    "trackrad2025_labeled_training_data/A_026/images/A_026_frames.mha",
    "trackrad2025_labeled_training_data/A_027/images/A_027_frames.mha",
    "trackrad2025_labeled_training_data/A_028/images/A_028_frames.mha",
    "trackrad2025_labeled_training_data/A_029/images/A_029_frames.mha",
    "trackrad2025_labeled_training_data/A_032/images/A_032_frames.mha",
    "trackrad2025_labeled_training_data/B_002/images/B_002_frames.mha",
    "trackrad2025_labeled_training_data/B_003/images/B_003_frames.mha",
    "trackrad2025_labeled_training_data/B_006/images/B_006_frames.mha",
    "trackrad2025_labeled_training_data/B_007/images/B_007_frames.mha",
    "trackrad2025_labeled_training_data/B_008/images/B_008_frames.mha",
    "trackrad2025_labeled_training_data/B_010/images/B_010_frames.mha",
    "trackrad2025_labeled_training_data/B_012/images/B_012_frames.mha",
    "trackrad2025_labeled_training_data/B_017/images/B_017_frames.mha",
    "trackrad2025_labeled_training_data/B_019/images/B_019_frames.mha",
    "trackrad2025_labeled_training_data/B_021/images/B_021_frames.mha",
    "trackrad2025_labeled_training_data/B_022/images/B_022_frames.mha",
    "trackrad2025_labeled_training_data/B_023/images/B_023_frames.mha",
    "trackrad2025_labeled_training_data/B_024/images/B_024_frames.mha",
    "trackrad2025_labeled_training_data/B_025/images/B_025_frames.mha",
    "trackrad2025_labeled_training_data/B_026/images/B_026_frames.mha",
    "trackrad2025_labeled_training_data/C_001/images/C_001_frames.mha",
    "trackrad2025_labeled_training_data/C_004/images/C_004_frames.mha",
    "trackrad2025_labeled_training_data/C_005/images/C_005_frames.mha",
    "trackrad2025_labeled_training_data/C_006/images/C_006_frames.mha",
    "trackrad2025_labeled_training_data/C_008/images/C_008_frames.mha",
    "trackrad2025_labeled_training_data/C_009/images/C_009_frames.mha",
    "trackrad2025_labeled_training_data/C_010/images/C_010_frames.mha",
    "trackrad2025_labeled_training_data/C_011/images/C_011_frames.mha",
    "trackrad2025_labeled_training_data/C_012/images/C_012_frames.mha",
    "trackrad2025_labeled_training_data/C_016/images/C_016_frames.mha",
]


def play_video(fname: str):
    files = download_image_files(fname)
    output_path = overlay_video(files)
    return output_path


demo = gr.Interface(
    play_video,
    [
        gr.Dropdown(
            choices=choices,
            label="Select an MR sequence",
            value=random.choice(choices),
        )
    ],
    gr.Video(
        height=500,
        autoplay=True,
        loop=True,
        label="MR Sequence",
    ),
    live=True,
    title="TrackRAD2025 Labeled Data Viewer",
    examples=[[random.choice(choices)]],
    cache_examples=True,
    preload_example=0,
    flagging_mode="never",
)


demo.launch()