File size: 10,144 Bytes
a7b5719 4ce1f5f a7b5719 1f9e550 a7b5719 1f9e550 a7b5719 4ce1f5f c33e07b 4ce1f5f 1f9e550 4ce1f5f a7b5719 4ce1f5f a7b5719 4ce1f5f a7b5719 1f9e550 a7b5719 1f9e550 4ce1f5f 1f9e550 4ce1f5f 1f9e550 4ce1f5f 1f9e550 4ce1f5f 1f9e550 4ce1f5f 1f9e550 a7b5719 4ce1f5f 1f9e550 4ce1f5f c33e07b 4ce1f5f c33e07b 4ce1f5f 1f9e550 4ce1f5f c33e07b 4ce1f5f c33e07b 4ce1f5f 1f9e550 4ce1f5f a7b5719 4ce1f5f a7b5719 c33e07b a7b5719 4ce1f5f a7b5719 4ce1f5f a7b5719 4ce1f5f a7b5719 4ce1f5f a7b5719 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import traceback
import gradio as gr
from utils.get_RGB_image import get_RGB_image, is_online_file, steam_online_file
from pdf2image import convert_from_path, convert_from_bytes
import layoutparser as lp
from PIL import Image
from utils.get_features import get_features
from imagehash import average_hash
from sklearn.metrics.pairwise import cosine_similarity
from utils.visualize_bboxes_on_image import visualize_bboxes_on_image
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
label_names = list(label_map.values())
color_map = {'Caption': '#acc2d9', 'Footnote': '#56ae57', 'Formula': '#b2996e', 'List-item': '#a8ff04', 'Page-footer': '#69d84f', 'Page-header': '#894585', 'Picture': '#70b23f', 'Section-header': '#d4ffff', 'Table': '#65ab7c', 'Text': '#952e8f', 'Title': '#fcfc81'}
cache = {
'output_document_image_1_hash': None,
'output_document_image_2_hash': None,
'document_image_1_features': None,
'document_image_2_features': None,
'original_document_image_1': None,
'original_document_image_2': None
}
pre_message_style = 'overflow:auto;border:2px solid pink;padding:4px;border-radius:4px;'
visualize_bboxes_on_image_kwargs = {
'label_text_color': 'white',
'label_fill_color': 'black',
'label_text_size': 12,
'label_text_padding': 3,
'label_rectangle_left_margin': 0,
'label_rectangle_top_margin': 0
}
vectors_types = ['vectors', 'weighted_vectors', 'reduced_vectors', 'weighted_reduced_vectors']
def similarity_fn(model: lp.Detectron2LayoutModel, document_image_1: Image.Image, document_image_2: Image.Image, vectors_type: str):
message = None
annotations = {
'predicted_bboxes': 'predicted_bboxes' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_bboxes',
'predicted_scores': 'predicted_scores' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_scores',
'predicted_labels': 'predicted_labels' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_labels',
}
show_vectors_type = False
try:
if document_image_1 is None or document_image_2 is None:
message = f'<pre style="{pre_message_style}">Please load both the documents to compare.<pre>'
else:
input_document_image_1_hash = str(average_hash(document_image_1))
input_document_image_2_hash = str(average_hash(document_image_2))
if input_document_image_1_hash == cache['output_document_image_1_hash']:
document_image_1_features = cache['document_image_1_features']
document_image_1 = cache['original_document_image_1']
else:
document_image_1_features = get_features(document_image_1, model, label_names)
cache['document_image_1_features'] = document_image_1_features
cache['original_document_image_1'] = document_image_1
if input_document_image_2_hash == cache['output_document_image_2_hash']:
document_image_2_features = cache['document_image_2_features']
document_image_2 = cache['original_document_image_2']
else:
document_image_2_features = get_features(document_image_2, model, label_names)
cache['document_image_2_features'] = document_image_2_features
cache['original_document_image_2'] = document_image_2
[[similarity]] = cosine_similarity(
[
cache['document_image_1_features'][vectors_type]
],
[
cache['document_image_2_features'][vectors_type]
])
message = f'<pre style="{pre_message_style}">Similarity between the two documents is: {round(similarity, 4)}<pre>'
document_image_1 = visualize_bboxes_on_image(
image = document_image_1,
bboxes = cache['document_image_1_features'][annotations['predicted_bboxes']],
labels = [f'{label}, score:{round(score, 2)}' for label, score in zip(
cache['document_image_1_features'][annotations['predicted_labels']],
cache['document_image_1_features'][annotations['predicted_scores']])],
bbox_outline_color = [color_map[label] for label in cache['document_image_1_features'][annotations['predicted_labels']]],
**visualize_bboxes_on_image_kwargs)
document_image_2 = visualize_bboxes_on_image(
image = document_image_2,
bboxes = cache['document_image_2_features'][annotations['predicted_bboxes']],
labels = [f'{label}, score:{score}' for label, score in zip(
cache['document_image_2_features'][annotations['predicted_labels']],
cache['document_image_2_features'][annotations['predicted_scores']])],
bbox_outline_color = [color_map[label] for label in cache['document_image_2_features'][annotations['predicted_labels']]],
**visualize_bboxes_on_image_kwargs)
cache['output_document_image_1_hash'] = str(average_hash(document_image_1))
cache['output_document_image_2_hash'] = str(average_hash(document_image_2))
show_vectors_type = True
except Exception as e:
message = f'<pre style="{pre_message_style}">{traceback.format_exc()}<pre>'
return [
gr.HTML(message, visible=True),
document_image_1,
document_image_2,
gr.Dropdown(visible=show_vectors_type)
]
def load_image(filename, page = 0):
try:
image = None
try:
if (is_online_file(filename)):
image = get_RGB_image(convert_from_bytes(steam_online_file(filename))[page])
else:
image = get_RGB_image(convert_from_path(filename)[page])
except:
image = get_RGB_image(filename)
return [
gr.Image(value=image, visible=True),
None
]
except:
error = traceback.format_exc()
return [None, gr.HTML(value=error, visible=True)]
def preview_url(url, page = 0):
[image, error] = load_image(url, page = page)
if image:
return [gr.Tabs(selected=0), image, error]
else:
return [gr.Tabs(selected=1), image, error]
def document_view(document_number: int):
gr.HTML(value=f'<h4>Load the {"first" if document_number == 1 else "second"} PDF or Document Image<h4>', elem_classes=['center'])
with gr.Tabs() as document_tabs:
with gr.Tab("From Image", id=0):
document = gr.Image(type="pil", label=f"Document {document_number}", visible=False, interactive=False, show_download_button=True)
document_error_message = gr.HTML(label="Error Message", visible=False)
document_preview = gr.UploadButton(
"Upload PDF or Document Image",
file_types=["image", ".pdf"],
file_count="single")
with gr.Tab("From URL", id=1):
document_url = gr.Textbox(
label=f"Document {document_number} URL",
info="Paste a Link/URL to PDF or Document Image",
placeholder="https://datasets-server.huggingface.co/.../image.jpg")
document_url_error_message = gr.HTML(label="Error Message", visible=False)
document_url_preview = gr.Button(value="Preview", variant="primary")
document_preview.upload(
fn = lambda file: load_image(file.name),
inputs = [document_preview],
outputs = [document, document_error_message])
document_url_preview.click(
fn = preview_url,
inputs = [document_url],
outputs = [document_tabs, document, document_url_error_message])
return document
def app(*, model_path, config_path, debug = False):
model: lp.Detectron2LayoutModel = lp.Detectron2LayoutModel(
config_path = config_path,
model_path = model_path,
label_map = label_map)
title = 'Document Similarity Search Using Visual Layout Features'
description = f"<h2>{title}<h2>"
css = '''
image { max-height="86vh" !important; }
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
.hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
'''
with gr.Blocks(title=title, css=css) as app:
with gr.Row():
gr.HTML(value=description, elem_classes=['center'])
with gr.Row(equal_height = False):
with gr.Column():
document_1_image = document_view(1)
with gr.Column():
document_2_image = document_view(2)
gr.HTML('<hr/>', elem_classes=['hr'])
with gr.Row(elem_classes=['center']):
with gr.Column():
submit = gr.Button(value="Get Similarity", variant="primary")
with gr.Column():
vectors_type = gr.Dropdown(
choices = vectors_types,
value = vectors_types[0],
visible = False,
label = "Vectors Type",
info = "Select the Vectors Type to use for Similarity Calculation")
similarity_output = gr.HTML(label="Similarity Score", visible=False)
reset = gr.Button(value="Reset", variant="secondary")
kwargs = {
'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn(
model,
document_1_image,
document_2_image,
vectors_type),
'inputs': [document_1_image, document_2_image, vectors_type],
'outputs': [similarity_output, document_1_image, document_2_image, vectors_type]
}
submit.click(**kwargs)
vectors_type.change(**kwargs)
return app.launch(debug=debug) |