Charles Kabui
print('document_image_1.info.get(annotation_key) == True, end:', document_image_1.info.get(annotation_key) == True)
4ce1f5f
import layoutparser as lp | |
from PIL import Image | |
import tensorflow as tf | |
import numpy as np | |
import torch | |
import torchvision.ops.boxes as box_ops | |
from typing import List, Tuple | |
from .split_image import split_image | |
from .get_unique_values import get_unique_values | |
def get_vectors(*, | |
predicted_bboxes: List[Tuple[int, int, int, int]], | |
predicted_scores: List[float], | |
predicted_labels: List[str], | |
label_names: List[str], | |
sub_images_bboxes: List[Tuple[int, int, int, int]], | |
index_start: int = 0.17, | |
index_end: int = 1, | |
weighted_jaccard_index = False): | |
bboxes_tensor: torch.Tensor = torch.tensor(predicted_bboxes) | |
labels_nonce = { value:key for key, value in zip(get_unique_values(start = index_start, end = index_end, count = len(label_names)), list(label_names)) } | |
def get_vector(bbox: Tuple[int, int, int, int], region_nonce: int): | |
# bbox: Expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. | |
bbox_tensor: torch.Tensor = torch.tensor([bbox]) | |
[jaccard_indexes] = box_ops.box_iou(bbox_tensor, bboxes_tensor) | |
''' | |
Either get the index of bounding box with largest jaccard_index (Intersection Over Union) or | |
get the index of bounding box with largest jaccard_index (Intersection Over Union) multiplied by the score. | |
By doing this we strike a balance between accuracy and relative position. | |
''' | |
index_of_jaccard_index = jaccard_indexes.argmax() if not weighted_jaccard_index else np.multiply(jaccard_indexes, predicted_scores).argmax() | |
jaccard_index = jaccard_indexes[index_of_jaccard_index] | |
jaccard_index_bbox_label__nonce = labels_nonce[predicted_labels[index_of_jaccard_index]] | |
jaccard_index_bbox_score = predicted_scores[index_of_jaccard_index] | |
vector = region_nonce * jaccard_index * jaccard_index_bbox_label__nonce * jaccard_index_bbox_score | |
return vector.item() | |
sub_images_nonces = get_unique_values(start = index_start, end = index_end, count = len(sub_images_bboxes)) | |
for sub_image_bbox, region_nonce in zip(sub_images_bboxes, sub_images_nonces): | |
yield get_vector(sub_image_bbox, region_nonce) | |
def get_predictions( | |
image: Image.Image, | |
model: lp.Detectron2LayoutModel, | |
predictions_reducer = lambda *args: args): | |
layout_predicted = model.detect(image) | |
if len(layout_predicted) > 0: | |
predicted_bboxes = [block.coordinates for block in layout_predicted] | |
predicted_scores = [block.score for block in layout_predicted] | |
predicted_labels = [block.type for block in layout_predicted] | |
[predicted_bboxes, predicted_scores, predicted_labels] = predictions_reducer( | |
predicted_bboxes, | |
predicted_scores, | |
predicted_labels) | |
return { | |
'predicted_bboxes': predicted_bboxes, | |
'predicted_scores': predicted_scores, | |
'predicted_labels': predicted_labels, | |
} | |
else: | |
return { | |
'predicted_bboxes': [], | |
'predicted_scores': [], | |
'predicted_labels': [], | |
} | |
def predictions_reducer( | |
predicted_bboxes: List[Tuple[int, int, int, int]], | |
predicted_scores: List[float], | |
predicted_labels: List[str]): | |
selected_indices = tf.image.non_max_suppression( | |
boxes = predicted_bboxes, | |
scores = predicted_scores , | |
max_output_size = len(predicted_bboxes), | |
iou_threshold = 0.01) | |
return { | |
'predicted_bboxes': tf.gather(predicted_bboxes, selected_indices).numpy().tolist(), # List[List[int, int, int, int]] | |
'predicted_scores': tf.gather(predicted_scores, selected_indices).numpy().astype(float).tolist(), | |
'predicted_labels': tf.gather(predicted_labels, selected_indices).numpy().astype(str).tolist() | |
} | |
def get_features(image: Image.Image, model: lp.Detectron2LayoutModel, label_names: List[str], width_parts = 100, height_parts = 100): | |
predictions = get_predictions(image, model) | |
reduced_predictions = predictions_reducer(**predictions) | |
sub_images_bboxes = list(split_image(np.array(image), width_parts, height_parts, result = 'bboxes')) | |
vectors = get_vectors( | |
sub_images_bboxes = sub_images_bboxes, | |
label_names = label_names, | |
weighted_jaccard_index = False, | |
**predictions) | |
weighted_vectors = get_vectors( | |
sub_images_bboxes = sub_images_bboxes, | |
label_names = label_names, | |
weighted_jaccard_index = True, | |
**predictions) | |
reduced_vectors = get_vectors( | |
sub_images_bboxes = sub_images_bboxes, | |
label_names = label_names, | |
weighted_jaccard_index = False, | |
**reduced_predictions) | |
reduced_weighted_vectors = get_vectors( | |
sub_images_bboxes = sub_images_bboxes, | |
label_names = label_names, | |
weighted_jaccard_index = True, | |
**reduced_predictions) | |
return { | |
'predicted_bboxes': predictions['predicted_bboxes'], | |
'predicted_scores': predictions['predicted_scores'], | |
'predicted_labels': predictions['predicted_labels'], | |
'vectors': list(vectors), | |
'weighted_vectors': list(weighted_vectors), | |
'reduced_predicted_bboxes': reduced_predictions['predicted_bboxes'], | |
'reduced_predicted_scores': reduced_predictions['predicted_scores'], | |
'reduced_predicted_labels': reduced_predictions['predicted_labels'], | |
'reduced_vectors': list(reduced_vectors), | |
'weighted_reduced_vectors': list(reduced_weighted_vectors), | |
} | |