Merge pull request #9 from TITC/patch-1
Browse files- tools/train_net.py +58 -29
tools/train_net.py
CHANGED
@@ -14,7 +14,13 @@ from detectron2.data import DatasetMapper, build_detection_train_loader
|
|
14 |
|
15 |
from detectron2.data.datasets import register_coco_instances
|
16 |
|
17 |
-
from detectron2.engine import
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from detectron2.evaluation import (
|
19 |
COCOEvaluator,
|
20 |
verify_results,
|
@@ -25,12 +31,14 @@ import pandas as pd
|
|
25 |
|
26 |
def get_augs(cfg):
|
27 |
"""Add all the desired augmentations here. A list of availble augmentations
|
28 |
-
can be found here:
|
29 |
https://detectron2.readthedocs.io/en/latest/modules/data_transforms.html
|
30 |
"""
|
31 |
augs = [
|
32 |
T.ResizeShortestEdge(
|
33 |
-
cfg.INPUT.MIN_SIZE_TRAIN,
|
|
|
|
|
34 |
)
|
35 |
]
|
36 |
if cfg.INPUT.CROP.ENABLED:
|
@@ -42,13 +50,13 @@ def get_augs(cfg):
|
|
42 |
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
43 |
)
|
44 |
)
|
45 |
-
horizontal_flip: bool =
|
46 |
-
augs.append(T.RandomFlip(horizontal=horizontal_flip,
|
47 |
-
vertical=not horizontal_flip))
|
48 |
# Rotate the image between -90 to 0 degrees clockwise around the centre
|
49 |
augs.append(T.RandomRotation(angle=[-90.0, 0.0]))
|
50 |
return augs
|
51 |
|
|
|
52 |
class Trainer(DefaultTrainer):
|
53 |
"""
|
54 |
We use the "DefaultTrainer" which contains pre-defined default logic for
|
@@ -56,7 +64,7 @@ class Trainer(DefaultTrainer):
|
|
56 |
are working on a new research project. In that case you can use the cleaner
|
57 |
"SimpleTrainer", or write your own training loop. You can use
|
58 |
"tools/plain_train_net.py" as an example.
|
59 |
-
|
60 |
Adapted from:
|
61 |
https://github.com/facebookresearch/detectron2/blob/master/projects/DeepLab/train_net.py
|
62 |
"""
|
@@ -102,19 +110,21 @@ class Trainer(DefaultTrainer):
|
|
102 |
for name in cfg.DATASETS.TEST
|
103 |
]
|
104 |
res = cls.test(cfg, model, evaluators)
|
105 |
-
pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR,
|
106 |
return res
|
107 |
|
|
|
108 |
def setup(args):
|
109 |
"""
|
110 |
Create configs and perform basic setups.
|
111 |
"""
|
112 |
cfg = get_cfg()
|
|
|
113 |
if args.config_file != "":
|
114 |
cfg.merge_from_file(args.config_file)
|
115 |
cfg.merge_from_list(args.opts)
|
116 |
|
117 |
-
with open(args.json_annotation_train,
|
118 |
anno_file = json.load(fp)
|
119 |
|
120 |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
|
@@ -122,13 +132,26 @@ def setup(args):
|
|
122 |
|
123 |
cfg.DATASETS.TRAIN = (f"{args.dataset_name}-train",)
|
124 |
cfg.DATASETS.TEST = (f"{args.dataset_name}-val",)
|
125 |
-
|
126 |
cfg.freeze()
|
127 |
default_setup(cfg, args)
|
128 |
return cfg
|
129 |
|
130 |
|
131 |
def main(args):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
cfg = setup(args)
|
133 |
|
134 |
if args.eval_only:
|
@@ -137,14 +160,14 @@ def main(args):
|
|
137 |
cfg.MODEL.WEIGHTS, resume=args.resume
|
138 |
)
|
139 |
res = Trainer.test(cfg, model)
|
140 |
-
|
141 |
if cfg.TEST.AUG.ENABLED:
|
142 |
res.update(Trainer.test_with_TTA(cfg, model))
|
143 |
if comm.is_main_process():
|
144 |
verify_results(cfg, res)
|
145 |
|
146 |
# Save the evaluation results
|
147 |
-
pd.DataFrame(res).to_csv(f
|
148 |
return res
|
149 |
|
150 |
# Ensure that the Output directory exists
|
@@ -158,7 +181,7 @@ def main(args):
|
|
158 |
trainer = Trainer(cfg)
|
159 |
trainer.resume_or_load(resume=args.resume)
|
160 |
trainer.register_hooks(
|
161 |
-
|
162 |
)
|
163 |
if cfg.TEST.AUG.ENABLED:
|
164 |
trainer.register_hooks(
|
@@ -171,24 +194,30 @@ if __name__ == "__main__":
|
|
171 |
parser = default_argument_parser()
|
172 |
|
173 |
# Extra Configurations for dataset names and paths
|
174 |
-
parser.add_argument(
|
175 |
-
|
176 |
-
|
177 |
-
parser.add_argument(
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
args = parser.parse_args()
|
181 |
print("Command Line Args:", args)
|
182 |
|
183 |
-
#
|
184 |
-
|
185 |
-
register_coco_instances(f"{dataset_name}-train", {},
|
186 |
-
args.json_annotation_train,
|
187 |
-
args.image_path_train)
|
188 |
-
|
189 |
-
register_coco_instances(f"{dataset_name}-val", {},
|
190 |
-
args.json_annotation_val,
|
191 |
-
args.image_path_val)
|
192 |
|
193 |
launch(
|
194 |
main,
|
@@ -197,4 +226,4 @@ if __name__ == "__main__":
|
|
197 |
machine_rank=args.machine_rank,
|
198 |
dist_url=args.dist_url,
|
199 |
args=(args,),
|
200 |
-
)
|
|
|
14 |
|
15 |
from detectron2.data.datasets import register_coco_instances
|
16 |
|
17 |
+
from detectron2.engine import (
|
18 |
+
DefaultTrainer,
|
19 |
+
default_argument_parser,
|
20 |
+
default_setup,
|
21 |
+
hooks,
|
22 |
+
launch,
|
23 |
+
)
|
24 |
from detectron2.evaluation import (
|
25 |
COCOEvaluator,
|
26 |
verify_results,
|
|
|
31 |
|
32 |
def get_augs(cfg):
|
33 |
"""Add all the desired augmentations here. A list of availble augmentations
|
34 |
+
can be found here:
|
35 |
https://detectron2.readthedocs.io/en/latest/modules/data_transforms.html
|
36 |
"""
|
37 |
augs = [
|
38 |
T.ResizeShortestEdge(
|
39 |
+
cfg.INPUT.MIN_SIZE_TRAIN,
|
40 |
+
cfg.INPUT.MAX_SIZE_TRAIN,
|
41 |
+
cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
|
42 |
)
|
43 |
]
|
44 |
if cfg.INPUT.CROP.ENABLED:
|
|
|
50 |
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
51 |
)
|
52 |
)
|
53 |
+
horizontal_flip: bool = cfg.INPUT.RANDOM_FLIP == "horizontal"
|
54 |
+
augs.append(T.RandomFlip(horizontal=horizontal_flip, vertical=not horizontal_flip))
|
|
|
55 |
# Rotate the image between -90 to 0 degrees clockwise around the centre
|
56 |
augs.append(T.RandomRotation(angle=[-90.0, 0.0]))
|
57 |
return augs
|
58 |
|
59 |
+
|
60 |
class Trainer(DefaultTrainer):
|
61 |
"""
|
62 |
We use the "DefaultTrainer" which contains pre-defined default logic for
|
|
|
64 |
are working on a new research project. In that case you can use the cleaner
|
65 |
"SimpleTrainer", or write your own training loop. You can use
|
66 |
"tools/plain_train_net.py" as an example.
|
67 |
+
|
68 |
Adapted from:
|
69 |
https://github.com/facebookresearch/detectron2/blob/master/projects/DeepLab/train_net.py
|
70 |
"""
|
|
|
110 |
for name in cfg.DATASETS.TEST
|
111 |
]
|
112 |
res = cls.test(cfg, model, evaluators)
|
113 |
+
pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR, "eval.csv"))
|
114 |
return res
|
115 |
|
116 |
+
|
117 |
def setup(args):
|
118 |
"""
|
119 |
Create configs and perform basic setups.
|
120 |
"""
|
121 |
cfg = get_cfg()
|
122 |
+
|
123 |
if args.config_file != "":
|
124 |
cfg.merge_from_file(args.config_file)
|
125 |
cfg.merge_from_list(args.opts)
|
126 |
|
127 |
+
with open(args.json_annotation_train, "r") as fp:
|
128 |
anno_file = json.load(fp)
|
129 |
|
130 |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
|
|
|
132 |
|
133 |
cfg.DATASETS.TRAIN = (f"{args.dataset_name}-train",)
|
134 |
cfg.DATASETS.TEST = (f"{args.dataset_name}-val",)
|
|
|
135 |
cfg.freeze()
|
136 |
default_setup(cfg, args)
|
137 |
return cfg
|
138 |
|
139 |
|
140 |
def main(args):
|
141 |
+
# Register Datasets
|
142 |
+
register_coco_instances(
|
143 |
+
f"{args.dataset_name}-train",
|
144 |
+
{},
|
145 |
+
args.json_annotation_train,
|
146 |
+
args.image_path_train,
|
147 |
+
)
|
148 |
+
|
149 |
+
register_coco_instances(
|
150 |
+
f"{args.dataset_name}-val",
|
151 |
+
{},
|
152 |
+
args.json_annotation_val,
|
153 |
+
args.image_path_val
|
154 |
+
)
|
155 |
cfg = setup(args)
|
156 |
|
157 |
if args.eval_only:
|
|
|
160 |
cfg.MODEL.WEIGHTS, resume=args.resume
|
161 |
)
|
162 |
res = Trainer.test(cfg, model)
|
163 |
+
|
164 |
if cfg.TEST.AUG.ENABLED:
|
165 |
res.update(Trainer.test_with_TTA(cfg, model))
|
166 |
if comm.is_main_process():
|
167 |
verify_results(cfg, res)
|
168 |
|
169 |
# Save the evaluation results
|
170 |
+
pd.DataFrame(res).to_csv(f"{cfg.OUTPUT_DIR}/eval.csv")
|
171 |
return res
|
172 |
|
173 |
# Ensure that the Output directory exists
|
|
|
181 |
trainer = Trainer(cfg)
|
182 |
trainer.resume_or_load(resume=args.resume)
|
183 |
trainer.register_hooks(
|
184 |
+
[hooks.EvalHook(0, lambda: trainer.eval_and_save(cfg, trainer.model))]
|
185 |
)
|
186 |
if cfg.TEST.AUG.ENABLED:
|
187 |
trainer.register_hooks(
|
|
|
194 |
parser = default_argument_parser()
|
195 |
|
196 |
# Extra Configurations for dataset names and paths
|
197 |
+
parser.add_argument(
|
198 |
+
"--dataset_name",
|
199 |
+
help="The Dataset Name")
|
200 |
+
parser.add_argument(
|
201 |
+
"--json_annotation_train",
|
202 |
+
help="The path to the training set JSON annotation",
|
203 |
+
)
|
204 |
+
parser.add_argument(
|
205 |
+
"--image_path_train",
|
206 |
+
help="The path to the training set image folder",
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
"--json_annotation_val",
|
210 |
+
help="The path to the validation set JSON annotation",
|
211 |
+
)
|
212 |
+
parser.add_argument(
|
213 |
+
"--image_path_val",
|
214 |
+
help="The path to the validation set image folder",
|
215 |
+
)
|
216 |
args = parser.parse_args()
|
217 |
print("Command Line Args:", args)
|
218 |
|
219 |
+
# Dataset Registration is moved to the main function to support multi-gpu training
|
220 |
+
# See ref https://github.com/facebookresearch/detectron2/issues/253#issuecomment-554216517
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
launch(
|
223 |
main,
|
|
|
226 |
machine_rank=args.machine_rank,
|
227 |
dist_url=args.dist_url,
|
228 |
args=(args,),
|
229 |
+
)
|