Spaces:
Sleeping
Sleeping
File size: 1,289 Bytes
cdcd05b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
from PIL import Image
def infer_segmentation(prompt, negative_prompt, image):
# implement your inference function here
im = Image.open("cat_image.jpeg")
return im
def infer_canny(prompt, negative_prompt, image):
# implement your inference function here
im = Image.open("cat_image.jpeg")
return im
with gr.Blocks() as demo:
gr.Markdown("## Stable Diffusion with Different Controls")
gr.Markdown("In this app, you can find different ControlNets with different filters. ")
input_list = [prompt_input, negative_prompt_input, image_input]
with gr.Tab("ControlNet on Canny Filter "):
prompt_input = gr.Textbox(label="Prompt")
negative_prompt_input = gr.Textbox(label="Negative Prompt")
image_input = gr.Image(label="Image")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=write_to_dataset, inputs=input_list, outputs="image")
with gr.Tab("ControlNet with Semantic Segmentation"):
prompt_input = gr.Textbox(label="Prompt")
negative_prompt_input = gr.Textbox(label="Negative Prompt")
image_input = gr.Image(label="Image")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=write_to_dataset, inputs=input_list, outputs="image")
demo.launch() |