File size: 1,547 Bytes
cdcd05b
 
 
 
 
 
 
 
 
 
 
 
 
 
6c7c4d5
cdcd05b
 
 
f815c0b
cdcd05b
4486ac5
 
123f257
 
90cff79
4486ac5
fecb3d9
123f257
cdcd05b
4486ac5
 
 
123f257
90cff79
4486ac5
123f257
cdcd05b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
from PIL import Image


def infer_segmentation(prompt, negative_prompt, image):
    # implement your inference function here
    im = Image.open("cat_image.jpeg")
    return im

def infer_canny(prompt, negative_prompt, image):
    # implement your inference function here
    im = Image.open("cat_image.jpeg")
    return im

with gr.Blocks(theme='gradio/soft') as demo:
    gr.Markdown("## Stable Diffusion with Different Controls")
    gr.Markdown("In this app, you can find different ControlNets with different filters. ")


    with gr.Tab("ControlNet on Canny Filter "):
        prompt_input_canny = gr.Textbox(label="Prompt")
        negative_prompt_canny = gr.Textbox(label="Negative Prompt")
        canny_input = gr.Image(label="Input Image")
        canny_output = gr.Image(label="Output Image")
        submit_btn = gr.Button(value = "Submit")
        canny_inputs = [prompt_input_canny, negative_prompt_canny, canny_input]
        submit_btn.click(fn=infer_canny, inputs=canny_inputs, outputs=[canny_output])
        
    with gr.Tab("ControlNet with Semantic Segmentation"):
        prompt_input_seg = gr.Textbox(label="Prompt")
        negative_prompt_seg = gr.Textbox(label="Negative Prompt")
        seg_input = gr.Image(label="Image")
        seg_output = gr.Image(label="Output Image")
        submit_btn = gr.Button(value = "Submit")
        seg_inputs = [prompt_input_seg, negative_prompt_seg, seg_input]
        submit_btn.click(fn=infer_segmentation, inputs=seg_inputs, outputs=[seg_output])

demo.launch()