meshsl's picture
Create app.py
c3bdccf verified
raw
history blame
539 Bytes
import transformers
import gradio as gr
from transformers import pipeline
sentiment =pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
# Classify a new sentence
sentence = "I love this product! It's amazing and works perfectly."
result = sentiment(sentence)
def get_sentiment(text):
result = sentiment(text)
label = result[0]['label']
score = result[0]['score']
return label, score
interface = gr.Interface(fn=get_sentiment, inputs= "textbox", outputs=["text","text"])
interface.launch()