wow / agent /run.py
Mohammed Foud
Add application file
ae5dc27
import os
import json
import re
from uuid import uuid4
from typing import Optional
# from agent.tools.message_tool import MessageTool
from agent.tools.message_tool import MessageTool
from agent.tools.sb_deploy_tool import SandboxDeployTool
from agent.tools.sb_expose_tool import SandboxExposeTool
from agent.tools.web_search_tool import WebSearchTool
from dotenv import load_dotenv
from utils.config import config
from agentpress.thread_manager import ThreadManager
from agentpress.response_processor import ProcessorConfig
from agent.tools.sb_shell_tool import SandboxShellTool
from agent.tools.sb_files_tool import SandboxFilesTool
from agent.tools.sb_browser_tool import SandboxBrowserTool
from agent.tools.data_providers_tool import DataProvidersTool
from agent.prompt import get_system_prompt
from utils import logger
from utils.auth_utils import get_account_id_from_thread
from services.billing import check_billing_status
from agent.tools.sb_vision_tool import SandboxVisionTool
load_dotenv()
async def run_agent(
thread_id: str,
project_id: str,
stream: bool,
thread_manager: Optional[ThreadManager] = None,
native_max_auto_continues: int = 25,
max_iterations: int = 150,
model_name: str = "anthropic/claude-3-7-sonnet-latest",
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low',
enable_context_manager: bool = True
):
"""Run the development agent with specified configuration."""
print(f"๐Ÿš€ Starting agent with model: {model_name}")
thread_manager = ThreadManager()
client = await thread_manager.db.client
# Get account ID from thread for billing checks
account_id = await get_account_id_from_thread(client, thread_id)
if not account_id:
raise ValueError("Could not determine account ID for thread")
# Get sandbox info from project
project = await client.table('projects').select('*').eq('project_id', project_id).execute()
if not project.data or len(project.data) == 0:
raise ValueError(f"Project {project_id} not found")
project_data = project.data[0]
sandbox_info = project_data.get('sandbox', {})
if not sandbox_info.get('id'):
raise ValueError(f"No sandbox found for project {project_id}")
# Initialize tools with project_id instead of sandbox object
# This ensures each tool independently verifies it's operating on the correct project
thread_manager.add_tool(SandboxShellTool, project_id=project_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxFilesTool, project_id=project_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxBrowserTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxDeployTool, project_id=project_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxExposeTool, project_id=project_id, thread_manager=thread_manager)
thread_manager.add_tool(MessageTool) # we are just doing this via prompt as there is no need to call it as a tool
thread_manager.add_tool(WebSearchTool)
thread_manager.add_tool(SandboxVisionTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
# Add data providers tool if RapidAPI key is available
if config.RAPID_API_KEY:
thread_manager.add_tool(DataProvidersTool)
# Only include sample response if the model name does not contain "anthropic"
if "anthropic" not in model_name.lower():
sample_response_path = os.path.join(os.path.dirname(__file__), 'sample_responses/1.txt')
with open(sample_response_path, 'r') as file:
sample_response = file.read()
system_message = { "role": "system", "content": get_system_prompt() + "\n\n <sample_assistant_response>" + sample_response + "</sample_assistant_response>" }
else:
system_message = { "role": "system", "content": get_system_prompt() }
iteration_count = 0
continue_execution = True
while continue_execution and iteration_count < max_iterations:
iteration_count += 1
# logger.debug(f"Running iteration {iteration_count}...")
# Billing check on each iteration - still needed within the iterations
can_run, message, subscription = await check_billing_status(client, account_id)
if not can_run:
error_msg = f"Billing limit reached: {message}"
# Yield a special message to indicate billing limit reached
yield {
"type": "status",
"status": "stopped",
"message": error_msg
}
break
# Check if last message is from assistant using direct Supabase query
latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute()
if latest_message.data and len(latest_message.data) > 0:
message_type = latest_message.data[0].get('type')
if message_type == 'assistant':
print(f"Last message was from assistant, stopping execution")
continue_execution = False
break
# ---- Temporary Message Handling (Browser State & Image Context) ----
temporary_message = None
temp_message_content_list = [] # List to hold text/image blocks
# Get the latest browser_state message
latest_browser_state_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute()
if latest_browser_state_msg.data and len(latest_browser_state_msg.data) > 0:
try:
browser_content = json.loads(latest_browser_state_msg.data[0]["content"])
screenshot_base64 = browser_content.get("screenshot_base64")
# Create a copy of the browser state without screenshot
browser_state_text = browser_content.copy()
browser_state_text.pop('screenshot_base64', None)
browser_state_text.pop('screenshot_url', None)
browser_state_text.pop('screenshot_url_base64', None)
if browser_state_text:
temp_message_content_list.append({
"type": "text",
"text": f"The following is the current state of the browser:\n{json.dumps(browser_state_text, indent=2)}"
})
if screenshot_base64:
temp_message_content_list.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{screenshot_base64}",
}
})
else:
logger.warning("Browser state found but no screenshot base64 data.")
await client.table('messages').delete().eq('message_id', latest_browser_state_msg.data[0]["message_id"]).execute()
except Exception as e:
logger.error(f"Error parsing browser state: {e}")
# Get the latest image_context message (NEW)
latest_image_context_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'image_context').order('created_at', desc=True).limit(1).execute()
if latest_image_context_msg.data and len(latest_image_context_msg.data) > 0:
try:
image_context_content = json.loads(latest_image_context_msg.data[0]["content"])
base64_image = image_context_content.get("base64")
mime_type = image_context_content.get("mime_type")
file_path = image_context_content.get("file_path", "unknown file")
if base64_image and mime_type:
temp_message_content_list.append({
"type": "text",
"text": f"Here is the image you requested to see: '{file_path}'"
})
temp_message_content_list.append({
"type": "image_url",
"image_url": {
"url": f"data:{mime_type};base64,{base64_image}",
}
})
else:
logger.warning(f"Image context found for '{file_path}' but missing base64 or mime_type.")
await client.table('messages').delete().eq('message_id', latest_image_context_msg.data[0]["message_id"]).execute()
except Exception as e:
logger.error(f"Error parsing image context: {e}")
# If we have any content, construct the temporary_message
if temp_message_content_list:
temporary_message = {"role": "user", "content": temp_message_content_list}
# logger.debug(f"Constructed temporary message with {len(temp_message_content_list)} content blocks.")
# ---- End Temporary Message Handling ----
# Set max_tokens based on model
max_tokens = None
if "sonnet" in model_name.lower():
max_tokens = 64000
elif "gpt-4" in model_name.lower():
max_tokens = 4096
response = await thread_manager.run_thread(
thread_id=thread_id,
system_prompt=system_message,
stream=stream,
llm_model=model_name,
llm_temperature=0,
llm_max_tokens=max_tokens,
tool_choice="auto",
max_xml_tool_calls=1,
temporary_message=temporary_message,
processor_config=ProcessorConfig(
xml_tool_calling=True,
native_tool_calling=False,
execute_tools=True,
execute_on_stream=True,
tool_execution_strategy="parallel",
xml_adding_strategy="user_message"
),
native_max_auto_continues=native_max_auto_continues,
include_xml_examples=True,
enable_thinking=enable_thinking,
reasoning_effort=reasoning_effort,
enable_context_manager=enable_context_manager
)
if isinstance(response, dict) and "status" in response and response["status"] == "error":
yield response
return
# Track if we see ask, complete, or web-browser-takeover tool calls
last_tool_call = None
async for chunk in response:
# print(f"CHUNK: {chunk}") # Uncomment for detailed chunk logging
# Check for XML versions like <ask>, <complete>, or <web-browser-takeover> in assistant content chunks
if chunk.get('type') == 'assistant' and 'content' in chunk:
try:
# The content field might be a JSON string or object
content = chunk.get('content', '{}')
if isinstance(content, str):
assistant_content_json = json.loads(content)
else:
assistant_content_json = content
# The actual text content is nested within
assistant_text = assistant_content_json.get('content', '')
if isinstance(assistant_text, str): # Ensure it's a string
# Check for the closing tags as they signal the end of the tool usage
if '</ask>' in assistant_text or '</complete>' in assistant_text or '</web-browser-takeover>' in assistant_text:
if '</ask>' in assistant_text:
xml_tool = 'ask'
elif '</complete>' in assistant_text:
xml_tool = 'complete'
elif '</web-browser-takeover>' in assistant_text:
xml_tool = 'web-browser-takeover'
last_tool_call = xml_tool
print(f"Agent used XML tool: {xml_tool}")
except json.JSONDecodeError:
# Handle cases where content might not be valid JSON
print(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}")
except Exception as e:
print(f"Error processing assistant chunk: {e}")
# # Check for native function calls (OpenAI format)
# elif chunk.get('type') == 'status' and 'content' in chunk:
# try:
# # Parse the status content
# status_content = chunk.get('content', '{}')
# if isinstance(status_content, str):
# status_content = json.loads(status_content)
# # Check if this is a tool call status
# status_type = status_content.get('status_type')
# function_name = status_content.get('function_name', '')
# # Check for special function names that should stop execution
# if status_type == 'tool_started' and function_name in ['ask', 'complete', 'web-browser-takeover']:
# last_tool_call = function_name
# print(f"Agent used native function call: {function_name}")
# except json.JSONDecodeError:
# # Handle cases where content might not be valid JSON
# print(f"Warning: Could not parse status content JSON: {chunk.get('content')}")
# except Exception as e:
# print(f"Error processing status chunk: {e}")
yield chunk
# Check if we should stop based on the last tool call
if last_tool_call in ['ask', 'complete', 'web-browser-takeover']:
print(f"Agent decided to stop with tool: {last_tool_call}")
continue_execution = False
# # TESTING
# async def test_agent():
# """Test function to run the agent with a sample query"""
# from agentpress.thread_manager import ThreadManager
# from services.supabase import DBConnection
# # Initialize ThreadManager
# thread_manager = ThreadManager()
# # Create a test thread directly with Postgres function
# client = await DBConnection().client
# try:
# # Get user's personal account
# account_result = await client.rpc('get_personal_account').execute()
# # if not account_result.data:
# # print("Error: No personal account found")
# # return
# account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59"
# if not account_id:
# print("Error: Could not get account ID")
# return
# # Find or create a test project in the user's account
# project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute()
# if project_result.data and len(project_result.data) > 0:
# # Use existing test project
# project_id = project_result.data[0]['project_id']
# print(f"\n๐Ÿ”„ Using existing test project: {project_id}")
# else:
# # Create new test project if none exists
# project_result = await client.table('projects').insert({
# "name": "test11",
# "account_id": account_id
# }).execute()
# project_id = project_result.data[0]['project_id']
# print(f"\nโœจ Created new test project: {project_id}")
# # Create a thread for this project
# thread_result = await client.table('threads').insert({
# 'project_id': project_id,
# 'account_id': account_id
# }).execute()
# thread_data = thread_result.data[0] if thread_result.data else None
# if not thread_data:
# print("Error: No thread data returned")
# return
# thread_id = thread_data['thread_id']
# except Exception as e:
# print(f"Error setting up thread: {str(e)}")
# return
# print(f"\n๐Ÿค– Agent Thread Created: {thread_id}\n")
# # Interactive message input loop
# while True:
# # Get user input
# user_message = input("\n๐Ÿ’ฌ Enter your message (or 'exit' to quit): ")
# if user_message.lower() == 'exit':
# break
# if not user_message.strip():
# print("\n๐Ÿ”„ Running agent...\n")
# await process_agent_response(thread_id, project_id, thread_manager)
# continue
# # Add the user message to the thread
# await thread_manager.add_message(
# thread_id=thread_id,
# type="user",
# content={
# "role": "user",
# "content": user_message
# },
# is_llm_message=True
# )
# print("\n๐Ÿ”„ Running agent...\n")
# await process_agent_response(thread_id, project_id, thread_manager)
# print("\n๐Ÿ‘‹ Test completed. Goodbye!")
# async def process_agent_response(
# thread_id: str,
# project_id: str,
# thread_manager: ThreadManager,
# stream: bool = True,
# model_name: str = "anthropic/claude-3-7-sonnet-latest",
# enable_thinking: Optional[bool] = False,
# reasoning_effort: Optional[str] = 'low',
# enable_context_manager: bool = True
# ):
# """Process the streaming response from the agent."""
# chunk_counter = 0
# current_response = ""
# tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status
# # Create a test sandbox for processing with a unique test prefix to avoid conflicts with production sandboxes
# sandbox_pass = str(uuid4())
# sandbox = create_sandbox(sandbox_pass)
# # Store the original ID so we can refer to it
# original_sandbox_id = sandbox.id
# # Generate a clear test identifier
# test_prefix = f"test_{uuid4().hex[:8]}_"
# logger.info(f"Created test sandbox with ID {original_sandbox_id} and test prefix {test_prefix}")
# # Log the sandbox URL for debugging
# print(f"\033[91mTest sandbox created: {str(sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m")
# async for chunk in run_agent(
# thread_id=thread_id,
# project_id=project_id,
# sandbox=sandbox,
# stream=stream,
# thread_manager=thread_manager,
# native_max_auto_continues=25,
# model_name=model_name,
# enable_thinking=enable_thinking,
# reasoning_effort=reasoning_effort,
# enable_context_manager=enable_context_manager
# ):
# chunk_counter += 1
# # print(f"CHUNK: {chunk}") # Uncomment for debugging
# if chunk.get('type') == 'assistant':
# # Try parsing the content JSON
# try:
# # Handle content as string or object
# content = chunk.get('content', '{}')
# if isinstance(content, str):
# content_json = json.loads(content)
# else:
# content_json = content
# actual_content = content_json.get('content', '')
# # Print the actual assistant text content as it comes
# if actual_content:
# # Check if it contains XML tool tags, if so, print the whole tag for context
# if '<' in actual_content and '>' in actual_content:
# # Avoid printing potentially huge raw content if it's not just text
# if len(actual_content) < 500: # Heuristic limit
# print(actual_content, end='', flush=True)
# else:
# # Maybe just print a summary if it's too long or contains complex XML
# if '</ask>' in actual_content: print("<ask>...</ask>", end='', flush=True)
# elif '</complete>' in actual_content: print("<complete>...</complete>", end='', flush=True)
# else: print("<tool_call>...</tool_call>", end='', flush=True) # Generic case
# else:
# # Regular text content
# print(actual_content, end='', flush=True)
# current_response += actual_content # Accumulate only text part
# except json.JSONDecodeError:
# # If content is not JSON (e.g., just a string chunk), print directly
# raw_content = chunk.get('content', '')
# print(raw_content, end='', flush=True)
# current_response += raw_content
# except Exception as e:
# print(f"\nError processing assistant chunk: {e}\n")
# elif chunk.get('type') == 'tool': # Updated from 'tool_result'
# # Add timestamp and format tool result nicely
# tool_name = "UnknownTool" # Try to get from metadata if available
# result_content = "No content"
# # Parse metadata - handle both string and dict formats
# metadata = chunk.get('metadata', {})
# if isinstance(metadata, str):
# try:
# metadata = json.loads(metadata)
# except json.JSONDecodeError:
# metadata = {}
# linked_assistant_msg_id = metadata.get('assistant_message_id')
# parsing_details = metadata.get('parsing_details')
# if parsing_details:
# tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details
# try:
# # Content is a JSON string or object
# content = chunk.get('content', '{}')
# if isinstance(content, str):
# content_json = json.loads(content)
# else:
# content_json = content
# # The actual tool result is nested inside content.content
# tool_result_str = content_json.get('content', '')
# # Extract the actual tool result string (remove outer <tool_result> tag if present)
# match = re.search(rf'<{tool_name}>(.*?)</{tool_name}>', tool_result_str, re.DOTALL)
# if match:
# result_content = match.group(1).strip()
# # Try to parse the result string itself as JSON for pretty printing
# try:
# result_obj = json.loads(result_content)
# result_content = json.dumps(result_obj, indent=2)
# except json.JSONDecodeError:
# # Keep as string if not JSON
# pass
# else:
# # Fallback if tag extraction fails
# result_content = tool_result_str
# except json.JSONDecodeError:
# result_content = chunk.get('content', 'Error parsing tool content')
# except Exception as e:
# result_content = f"Error processing tool chunk: {e}"
# print(f"\n\n๐Ÿ› ๏ธ TOOL RESULT [{tool_name}] โ†’ {result_content}")
# elif chunk.get('type') == 'status':
# # Log tool status changes
# try:
# # Handle content as string or object
# status_content = chunk.get('content', '{}')
# if isinstance(status_content, str):
# status_content = json.loads(status_content)
# status_type = status_content.get('status_type')
# function_name = status_content.get('function_name', '')
# xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available
# tool_name = xml_tag_name or function_name # Prefer XML tag name
# if status_type == 'tool_started' and tool_name:
# tool_usage_counter += 1
# print(f"\nโณ TOOL STARTING #{tool_usage_counter} [{tool_name}]")
# print(" " + "-" * 40)
# # Return to the current content display
# if current_response:
# print("\nContinuing response:", flush=True)
# print(current_response, end='', flush=True)
# elif status_type == 'tool_completed' and tool_name:
# status_emoji = "โœ…"
# print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}")
# elif status_type == 'finish':
# finish_reason = status_content.get('finish_reason', '')
# if finish_reason:
# print(f"\n๐Ÿ“Œ Finished: {finish_reason}")
# # else: # Print other status types if needed for debugging
# # print(f"\nโ„น๏ธ STATUS: {chunk.get('content')}")
# except json.JSONDecodeError:
# print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}")
# except Exception as e:
# print(f"\nError processing status chunk: {e}")
# # Removed elif chunk.get('type') == 'tool_call': block
# # Update final message
# print(f"\n\nโœ… Agent run completed with {tool_usage_counter} tool executions")
# # Try to clean up the test sandbox if possible
# try:
# # Attempt to delete/archive the sandbox to clean up resources
# # Note: Actual deletion may depend on the Daytona SDK's capabilities
# logger.info(f"Attempting to clean up test sandbox {original_sandbox_id}")
# # If there's a method to archive/delete the sandbox, call it here
# # Example: daytona.archive_sandbox(sandbox.id)
# except Exception as e:
# logger.warning(f"Failed to clean up test sandbox {original_sandbox_id}: {str(e)}")
# if __name__ == "__main__":
# import asyncio
# # Configure any environment variables or setup needed for testing
# load_dotenv() # Ensure environment variables are loaded
# # Run the test function
# asyncio.run(test_agent())