Spaces:
Sleeping
Sleeping
File size: 23,158 Bytes
aa80548 62f88b4 aa80548 0384c3e aa80548 62f88b4 aa80548 62f88b4 aa80548 3c37f6f 90e64d1 62f88b4 3c37f6f 62f88b4 aa80548 62f88b4 aa80548 62f88b4 3c37f6f aa80548 3c37f6f aa80548 e9679bf aa80548 3c37f6f e9679bf 62f88b4 aa80548 3c37f6f 394ae41 e9679bf 394ae41 e9679bf 394ae41 aa80548 90e64d1 aa80548 3c37f6f aa80548 3c37f6f 394ae41 9e990a1 394ae41 aa80548 3c37f6f 394ae41 aa80548 9e990a1 aa80548 90e64d1 62f88b4 aa80548 66aa79d 62f88b4 3c37f6f aa80548 0b705bc aa80548 66aa79d aa80548 3c37f6f aa80548 66aa79d 17235f9 aa80548 0384c3e aa80548 0384c3e aa80548 0384c3e aa80548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
# Copyright 2025 Google LLC.
# Based on work by Yousif Ahmed.
# Concept: ChronoWeave β Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# Obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
import os
import json
import time
import uuid
import asyncio
import logging
import shutil
import contextlib
import wave
from io import BytesIO
from typing import List, Optional, Tuple, Dict, Any
import streamlit as st
import numpy as np
from PIL import Image
# Pydantic for data validation
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
# Google Generative AI library and async patch
import google.generativeai as genai
import nest_asyncio
nest_asyncio.apply() # Ensure asyncio works correctly in Streamlit/Jupyter
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# --- Constants & Configurations ---
TEXT_MODEL_ID = "models/gemini-1.5-flash" # Alternatively "gemini-1.5-pro"
AUDIO_MODEL_ID = "models/gemini-1.5-flash" # Synchronous generation for audio now
AUDIO_SAMPLING_RATE = 24000
IMAGE_MODEL_ID = "imagen-3" # NOTE: Requires Vertex AI SDK integration in the future
DEFAULT_ASPECT_RATIO = "1:1"
VIDEO_FPS = 24
VIDEO_CODEC = "libx264"
AUDIO_CODEC = "aac"
TEMP_DIR_BASE = ".chrono_temp"
# --- Pydantic Schemas ---
class StorySegment(BaseModel):
scene_id: int = Field(..., ge=0)
image_prompt: str = Field(..., min_length=10, max_length=250)
audio_text: str = Field(..., min_length=5, max_length=150)
character_description: str = Field(..., max_length=250)
timeline_visual_modifier: Optional[str] = Field(None, max_length=50)
@field_validator("image_prompt")
@classmethod
def image_prompt_no_humans(cls, v: str) -> str:
if any(word in v.lower() for word in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
logger.warning(f"Image prompt '{v[:50]}...' may include human-related descriptions.")
return v
class Timeline(BaseModel):
timeline_id: int = Field(..., ge=0)
divergence_reason: str = Field(..., min_length=5)
segments: List[StorySegment] = Field(..., min_items=1)
class ChronoWeaveResponse(BaseModel):
core_theme: str = Field(..., min_length=5)
timelines: List[Timeline] = Field(..., min_items=1)
total_scenes_per_timeline: int = Field(..., gt=0)
@model_validator(mode="after")
def check_timeline_segment_count(self) -> "ChronoWeaveResponse":
expected = self.total_scenes_per_timeline
for i, timeline in enumerate(self.timelines):
if len(timeline.segments) != expected:
raise ValueError(f"Timeline {i} (ID: {timeline.timeline_id}): Expected {expected} segments, got {len(timeline.segments)}.")
return self
# --- Helper Functions ---
@contextlib.contextmanager
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
"""
Safely writes a WAV file using a context manager.
"""
wf = None
try:
wf = wave.open(filename, "wb")
wf.setnchannels(channels)
wf.setsampwidth(sample_width) # 16-bit audio (2 bytes)
wf.setframerate(rate)
yield wf
except Exception as exc:
logger.error(f"Error writing wave file {filename}: {exc}")
raise
finally:
if wf:
try:
wf.close()
except Exception as e_close:
logger.error(f"Error closing wave file {filename}: {e_close}")
# --- ChronoWeave Generator Class ---
class ChronoWeaveGenerator:
"""
Encapsulates the logic for generating branching narratives,
processing audio, images, and assembling video outputs.
"""
def __init__(self, api_key: str):
self.api_key = api_key
genai.configure(api_key=self.api_key)
try:
self.client_text = genai.GenerativeModel(TEXT_MODEL_ID)
logger.info(f"Initialized text model: {TEXT_MODEL_ID}")
self.client_audio = genai.GenerativeModel(AUDIO_MODEL_ID)
logger.info(f"Initialized audio model: {AUDIO_MODEL_ID}")
self.client_image = genai.GenerativeModel(IMAGE_MODEL_ID)
logger.info(f"Initialized image model: {IMAGE_MODEL_ID} (Placeholder: Update to Vertex AI SDK)")
except Exception as exc:
logger.exception("Failed to initialize Google Clients/Models.")
raise exc
def generate_story_structure(
self, theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = ""
) -> Optional[ChronoWeaveResponse]:
"""
Generates a story structure as JSON using the text model and validates it via Pydantic.
"""
st.info(f"Generating {num_timelines} timeline(s) with {num_scenes} scene(s) for theme: '{theme}'")
logger.info(f"Story generation request: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")
divergence_instruction = (
f"Introduce clear divergence after the first scene. Hint: '{divergence_prompt}'. "
f"For timeline_id 0, use 'Initial path' or 'Baseline scenario'."
)
prompt = f"""Act as a narrative designer. Create a story for the theme: "{theme}".
Instructions:
1. Exactly **{num_timelines}** timelines.
2. Each timeline must consist of exactly **{num_scenes}** scenes.
3. **NO humans/humanoids**; focus on animals, fantasy creatures, animated objects, and nature.
4. {divergence_instruction}
5. Style: **'Simple, friendly kids animation, bright colors, rounded shapes'** unless modified by `timeline_visual_modifier`.
6. `audio_text`: One concise sentence (max 30 words).
7. `image_prompt`: Descriptive prompt (15β35 words) emphasizing scene elements. **Avoid repeating general style.**
8. `character_description`: Very brief (name and features; < 20 words).
Output only a valid JSON object conforming exactly to this schema:
JSON Schema: ```json
{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}
```"""
try:
response = self.client_text.generate_content(
contents=prompt,
generation_config=genai.types.GenerationConfig(
response_mime_type="application/json", temperature=0.7
),
)
raw_data = json.loads(response.text)
validated_data = ChronoWeaveResponse.model_validate(raw_data)
st.success("Story structure validated successfully!")
return validated_data
except json.JSONDecodeError as json_err:
logger.error(f"JSON decode failed: {json_err}\nResponse: {response.text}")
st.error(f"π¨ JSON Parsing Error: {json_err}", icon="π")
st.text_area("Response", response.text, height=150)
except ValidationError as val_err:
logger.error(f"Pydantic validation error: {val_err}\nData: {json.dumps(raw_data, indent=2)}")
st.error(f"π¨ Invalid story structure: {val_err}", icon="π§¬")
st.json(raw_data)
except Exception as e:
logger.exception("Story generation error:")
st.error(f"π¨ Error generating story: {e}", icon="π₯")
return None
async def generate_audio(self, text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
"""
Asynchronously generates audio by wrapping the synchronous generate_content call.
The call is executed using asyncio.to_thread to avoid blocking.
"""
task_id = os.path.basename(output_filename).split(".")[0]
logger.info(f"ποΈ [{task_id}] Generating audio for text: '{text[:60]}...'")
try:
# Define a synchronous function for audio generation.
def sync_generate_audio():
prompt = f"Narrate directly: \"{text}\""
response = self.client_audio.generate_content(
contents=prompt,
generation_config=genai.types.GenerationConfig(
response_mime_type="application/octet-stream",
temperature=0.7,
audio_config={"audio_encoding": "LINEAR16", "sample_rate_hertz": AUDIO_SAMPLING_RATE}
)
)
return response
# Execute the synchronous call in a separate thread.
response = await asyncio.to_thread(sync_generate_audio)
# Process the response. Adjust as necessary based on the APIβs actual response structure.
if not response or not hasattr(response, "audio_chunk") or not response.audio_chunk.data:
logger.error(f"β [{task_id}] No audio data returned.")
st.error(f"Audio generation failed for {task_id}: No audio data.", icon="π")
return None
audio_data = response.audio_chunk.data
with wave_file_writer(output_filename) as wf:
wf.writeframes(audio_data)
logger.info(f"β
[{task_id}] Audio saved: {os.path.basename(output_filename)} ({len(audio_data)} bytes)")
return output_filename
except Exception as e:
logger.exception(f"β [{task_id}] Audio generation error: {e}")
st.error(f"Audio generation failed for {task_id}: {e}", icon="π")
return None
async def generate_image_async(self, prompt: str, aspect_ratio: str, task_id: str) -> Optional[Image.Image]:
"""
Placeholder for image generation.
Currently logs an error and returns None. Update this function once integrating Vertex AI SDK.
"""
logger.info(f"πΌοΈ [{task_id}] Requesting image for prompt: '{prompt[:70]}...' (Aspect Ratio: {aspect_ratio})")
logger.error(f"β [{task_id}] Image generation not implemented. Update required for Vertex AI.")
st.error(f"Image generation for {task_id} skipped: Requires Vertex AI SDK implementation.", icon="πΌοΈ")
return None
async def process_scene(
self,
timeline_id: int,
segment: StorySegment,
temp_dir: str,
aspect_ratio: str,
audio_voice: Optional[str] = None,
) -> Tuple[Optional[str], Optional[str], Optional[Any], List[str]]:
"""
Processes a single scene: concurrently generates image and audio,
and then creates a video clip if both outputs are available.
Returns a tuple of (image_path, audio_path, video_clip, [error messages]).
"""
errors: List[str] = []
task_id = f"T{timeline_id}_S{segment.scene_id}"
image_path = os.path.join(temp_dir, f"{task_id}_image.png")
audio_path = os.path.join(temp_dir, f"{task_id}_audio.wav")
video_clip = None
# Launch image and audio generation concurrently.
image_future = asyncio.create_task(
self.generate_image_async(
prompt=f"{segment.image_prompt} Featuring: {segment.character_description} " +
(f"Style hint: {segment.timeline_visual_modifier}" if segment.timeline_visual_modifier else ""),
aspect_ratio=aspect_ratio,
task_id=task_id,
)
)
audio_future = asyncio.create_task(self.generate_audio(segment.audio_text, audio_path, audio_voice))
image_result, audio_result = await asyncio.gather(image_future, audio_future)
if image_result:
try:
image_result.save(image_path)
st.image(image_result, width=180, caption=f"Scene {segment.scene_id + 1}")
except Exception as e:
logger.error(f"β [{task_id}] Error saving image: {e}")
errors.append(f"Scene {segment.scene_id + 1}: Image save error.")
else:
errors.append(f"Scene {segment.scene_id + 1}: Image generation failed.")
if audio_result:
try:
with open(audio_result, "rb") as ap:
st.audio(ap.read(), format="audio/wav")
except Exception as e:
logger.warning(f"β οΈ [{task_id}] Audio preview error: {e}")
else:
errors.append(f"Scene {segment.scene_id + 1}: Audio generation failed.")
if not errors and os.path.exists(image_path) and os.path.exists(audio_path):
try:
audio_clip = AudioFileClip(audio_path)
np_img = np.array(Image.open(image_path))
img_clip = ImageClip(np_img).set_duration(audio_clip.duration)
video_clip = img_clip.set_audio(audio_clip)
logger.info(f"β
[{task_id}] Video clip created (Duration: {audio_clip.duration:.2f}s).")
except Exception as e:
logger.exception(f"β [{task_id}] Failed to create video clip: {e}")
errors.append(f"Scene {segment.scene_id + 1}: Video clip creation failed.")
finally:
try:
if 'audio_clip' in locals():
audio_clip.close()
if 'img_clip' in locals():
img_clip.close()
except Exception:
pass
return (
image_path if os.path.exists(image_path) else None,
audio_path if os.path.exists(audio_path) else None,
video_clip,
errors,
)
async def process_timeline(
self,
timeline: Timeline,
temp_dir: str,
aspect_ratio: str,
audio_voice: Optional[str] = None,
) -> Tuple[Optional[str], List[str]]:
"""
Processes an entire timeline by concurrently processing all its scenes,
then assembling a final video if every scene produced a valid clip.
Returns a tuple of (final video path, list of error messages).
"""
timeline_id = timeline.timeline_id
scene_tasks = [
self.process_scene(timeline_id, segment, temp_dir, aspect_ratio, audio_voice)
for segment in timeline.segments
]
results = await asyncio.gather(*scene_tasks)
video_clips = []
timeline_errors: List[str] = []
for idx, (img_path, aud_path, clip, errs) in enumerate(results):
if errs:
timeline_errors.extend(errs)
if clip is not None:
video_clips.append(clip)
if video_clips and len(video_clips) == len(timeline.segments):
output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4")
try:
final_video = concatenate_videoclips(video_clips, method="compose")
final_video.write_videofile(
output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None
)
logger.info(f"β
Timeline {timeline_id} video saved: {output_filename}")
for clip in video_clips:
clip.close()
final_video.close()
return output_filename, timeline_errors
except Exception as e:
logger.exception(f"β Timeline {timeline_id} video assembly failed: {e}")
timeline_errors.append(f"Timeline {timeline_id}: Video assembly failed.")
else:
timeline_errors.append(f"Timeline {timeline_id}: Incomplete scenes; skipping video assembly.")
return None, timeline_errors
# --- Streamlit UI and Main Process ---
def main():
# API Key Retrieval
GOOGLE_API_KEY: Optional[str] = None
try:
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
logger.info("Google API Key loaded from Streamlit secrets.")
except KeyError:
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
if GOOGLE_API_KEY:
logger.info("Google API Key loaded from environment variable.")
else:
st.error("π¨ **Google API Key Not Found!** Please configure it.", icon="π¨")
st.stop()
st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
st.title("π ChronoWeave: Advanced Branching Narrative Generator")
st.markdown("""
Generate multiple, branching story timelines from a single theme using AI β complete with images and narration.
*Based on work by Yousif Ahmed. Copyright 2025 Google LLC.*
""")
st.sidebar.header("βοΈ Configuration")
if GOOGLE_API_KEY:
st.sidebar.success("Google API Key Loaded", icon="β
")
else:
st.sidebar.error("Google API Key Missing!", icon="π¨")
theme = st.sidebar.text_input("π Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
num_scenes = st.sidebar.slider("π¬ Scenes per Timeline:", min_value=2, max_value=7, value=3)
num_timelines = st.sidebar.slider("πΏ Number of Timelines:", min_value=1, max_value=4, value=2)
divergence_prompt = st.sidebar.text_input("βοΈ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
st.sidebar.subheader("π¨ Visual & Audio Settings")
aspect_ratio = st.sidebar.selectbox("πΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
audio_voice = None
generate_button = st.sidebar.button("β¨ Generate ChronoWeave β¨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.info("β³ Generation may take several minutes.")
st.sidebar.markdown(f"<small>Txt: {TEXT_MODEL_ID}, Img: {IMAGE_MODEL_ID}, Aud: {AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)
if generate_button:
if not theme:
st.error("Please enter a story theme.", icon="π")
return
run_id = str(uuid.uuid4()).split('-')[0]
temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
try:
os.makedirs(temp_dir, exist_ok=True)
logger.info(f"Created temporary directory: {temp_dir}")
except OSError as e:
st.error(f"π¨ Failed to create temporary directory {temp_dir}: {e}", icon="π")
st.stop()
# Instantiate ChronoWeaveGenerator and generate story structure.
generator = ChronoWeaveGenerator(GOOGLE_API_KEY)
chrono_response = None
with st.spinner("Generating narrative structure... π€"):
chrono_response = generator.generate_story_structure(theme, num_scenes, num_timelines, divergence_prompt)
if not chrono_response:
logger.error("Story generation or validation failed.")
return
overall_start_time = time.time()
final_video_paths: Dict[int, str] = {}
generation_errors: Dict[int, List[str]] = {}
async def process_all_timelines():
timeline_tasks = {
timeline.timeline_id: asyncio.create_task(
generator.process_timeline(timeline, temp_dir, aspect_ratio, audio_voice)
)
for timeline in chrono_response.timelines
}
results = await asyncio.gather(*timeline_tasks.values(), return_exceptions=False)
return results
with st.spinner("Processing scenes and assembling videos..."):
timeline_results = asyncio.run(process_all_timelines())
for timeline, (video_path, errors) in zip(chrono_response.timelines, timeline_results):
generation_errors[timeline.timeline_id] = errors
if video_path:
final_video_paths[timeline.timeline_id] = video_path
overall_duration = time.time() - overall_start_time
if final_video_paths:
st.success(f"Complete! ({len(final_video_paths)} video(s) created in {overall_duration:.2f}s)")
else:
st.error(f"Failed. No final videos generated in {overall_duration:.2f}s")
st.header("π¬ Generated Timelines")
if final_video_paths:
sorted_ids = sorted(final_video_paths.keys())
num_cols = min(len(sorted_ids), 3)
cols = st.columns(num_cols)
for idx, timeline_id in enumerate(sorted_ids):
video_path = final_video_paths[timeline_id]
timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
divergence = timeline_data.divergence_reason if timeline_data else "Unknown"
with cols[idx % num_cols]:
st.subheader(f"Timeline {timeline_id}")
st.caption(f"Divergence: {divergence}")
try:
with open(video_path, "rb") as vf:
video_bytes = vf.read()
st.video(video_bytes)
st.download_button(
f"Download Timeline {timeline_id}",
video_bytes,
file_name=f"timeline_{timeline_id}.mp4",
mime="video/mp4",
key=f"dl_{timeline_id}"
)
if generation_errors.get(timeline_id):
scene_errs = generation_errors[timeline_id]
if scene_errs:
with st.expander(f"β οΈ View Scene Issues ({len(scene_errs)})"):
for err in scene_errs:
st.warning(f"- {err}")
except FileNotFoundError:
st.error(f"Error: Video for Timeline {timeline_id} is missing.", icon="π¨")
except Exception as e:
st.error(f"Display error for Timeline {timeline_id}: {e}", icon="π¨")
else:
st.warning("No final videos were successfully generated.")
with st.expander("View All Generation Errors", expanded=True):
for tid, errs in generation_errors.items():
if errs:
st.error(f"Timeline {tid}:")
for msg in errs:
st.error(f" - {msg}")
st.info(f"Cleaning up temporary files: {temp_dir}")
try:
shutil.rmtree(temp_dir)
st.success("β
Temporary files cleaned up.")
logger.info(f"Temporary directory removed: {temp_dir}")
except Exception as e:
st.warning(f"Could not remove temporary files at: {temp_dir}", icon="β οΈ")
logger.error(f"Failed to remove temporary directory {temp_dir}: {e}")
else:
st.info("Configure settings and click 'β¨ Generate ChronoWeave β¨' to start.")
if __name__ == "__main__":
main()
|