File size: 23,158 Bytes
aa80548
 
 
 
 
 
62f88b4
 
 
 
aa80548
0384c3e
aa80548
 
 
 
 
 
62f88b4
aa80548
 
62f88b4
aa80548
3c37f6f
90e64d1
62f88b4
 
3c37f6f
62f88b4
aa80548
 
62f88b4
aa80548
62f88b4
3c37f6f
aa80548
3c37f6f
 
aa80548
 
 
e9679bf
aa80548
3c37f6f
 
e9679bf
 
 
62f88b4
aa80548
 
3c37f6f
394ae41
e9679bf
394ae41
e9679bf
394ae41
aa80548
 
90e64d1
 
aa80548
 
3c37f6f
aa80548
 
3c37f6f
394ae41
9e990a1
394ae41
aa80548
 
3c37f6f
394ae41
 
 
aa80548
 
 
9e990a1
aa80548
 
 
90e64d1
62f88b4
aa80548
66aa79d
62f88b4
3c37f6f
aa80548
 
 
0b705bc
 
aa80548
 
 
 
66aa79d
aa80548
 
 
3c37f6f
aa80548
 
 
 
 
66aa79d
17235f9
aa80548
 
0384c3e
aa80548
 
0384c3e
aa80548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0384c3e
aa80548
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# Copyright 2025 Google LLC.
# Based on work by Yousif Ahmed.
# Concept: ChronoWeave – Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# Obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0

import os
import json
import time
import uuid
import asyncio
import logging
import shutil
import contextlib
import wave
from io import BytesIO
from typing import List, Optional, Tuple, Dict, Any

import streamlit as st
import numpy as np
from PIL import Image

# Pydantic for data validation
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator

# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips

# Google Generative AI library and async patch
import google.generativeai as genai
import nest_asyncio
nest_asyncio.apply()  # Ensure asyncio works correctly in Streamlit/Jupyter

# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# --- Constants & Configurations ---
TEXT_MODEL_ID = "models/gemini-1.5-flash"   # Alternatively "gemini-1.5-pro"
AUDIO_MODEL_ID = "models/gemini-1.5-flash"    # Synchronous generation for audio now
AUDIO_SAMPLING_RATE = 24000
IMAGE_MODEL_ID = "imagen-3"  # NOTE: Requires Vertex AI SDK integration in the future
DEFAULT_ASPECT_RATIO = "1:1"
VIDEO_FPS = 24
VIDEO_CODEC = "libx264"
AUDIO_CODEC = "aac"
TEMP_DIR_BASE = ".chrono_temp"


# --- Pydantic Schemas ---
class StorySegment(BaseModel):
    scene_id: int = Field(..., ge=0)
    image_prompt: str = Field(..., min_length=10, max_length=250)
    audio_text: str = Field(..., min_length=5, max_length=150)
    character_description: str = Field(..., max_length=250)
    timeline_visual_modifier: Optional[str] = Field(None, max_length=50)

    @field_validator("image_prompt")
    @classmethod
    def image_prompt_no_humans(cls, v: str) -> str:
        if any(word in v.lower() for word in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
            logger.warning(f"Image prompt '{v[:50]}...' may include human-related descriptions.")
        return v


class Timeline(BaseModel):
    timeline_id: int = Field(..., ge=0)
    divergence_reason: str = Field(..., min_length=5)
    segments: List[StorySegment] = Field(..., min_items=1)


class ChronoWeaveResponse(BaseModel):
    core_theme: str = Field(..., min_length=5)
    timelines: List[Timeline] = Field(..., min_items=1)
    total_scenes_per_timeline: int = Field(..., gt=0)

    @model_validator(mode="after")
    def check_timeline_segment_count(self) -> "ChronoWeaveResponse":
        expected = self.total_scenes_per_timeline
        for i, timeline in enumerate(self.timelines):
            if len(timeline.segments) != expected:
                raise ValueError(f"Timeline {i} (ID: {timeline.timeline_id}): Expected {expected} segments, got {len(timeline.segments)}.")
        return self


# --- Helper Functions ---
@contextlib.contextmanager
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
    """
    Safely writes a WAV file using a context manager.
    """
    wf = None
    try:
        wf = wave.open(filename, "wb")
        wf.setnchannels(channels)
        wf.setsampwidth(sample_width)  # 16-bit audio (2 bytes)
        wf.setframerate(rate)
        yield wf
    except Exception as exc:
        logger.error(f"Error writing wave file {filename}: {exc}")
        raise
    finally:
        if wf:
            try:
                wf.close()
            except Exception as e_close:
                logger.error(f"Error closing wave file {filename}: {e_close}")


# --- ChronoWeave Generator Class ---
class ChronoWeaveGenerator:
    """
    Encapsulates the logic for generating branching narratives,
    processing audio, images, and assembling video outputs.
    """

    def __init__(self, api_key: str):
        self.api_key = api_key
        genai.configure(api_key=self.api_key)

        try:
            self.client_text = genai.GenerativeModel(TEXT_MODEL_ID)
            logger.info(f"Initialized text model: {TEXT_MODEL_ID}")
            self.client_audio = genai.GenerativeModel(AUDIO_MODEL_ID)
            logger.info(f"Initialized audio model: {AUDIO_MODEL_ID}")
            self.client_image = genai.GenerativeModel(IMAGE_MODEL_ID)
            logger.info(f"Initialized image model: {IMAGE_MODEL_ID} (Placeholder: Update to Vertex AI SDK)")
        except Exception as exc:
            logger.exception("Failed to initialize Google Clients/Models.")
            raise exc

    def generate_story_structure(
        self, theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = ""
    ) -> Optional[ChronoWeaveResponse]:
        """
        Generates a story structure as JSON using the text model and validates it via Pydantic.
        """
        st.info(f"Generating {num_timelines} timeline(s) with {num_scenes} scene(s) for theme: '{theme}'")
        logger.info(f"Story generation request: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")

        divergence_instruction = (
            f"Introduce clear divergence after the first scene. Hint: '{divergence_prompt}'. "
            f"For timeline_id 0, use 'Initial path' or 'Baseline scenario'."
        )

        prompt = f"""Act as a narrative designer. Create a story for the theme: "{theme}".
Instructions:
1. Exactly **{num_timelines}** timelines.
2. Each timeline must consist of exactly **{num_scenes}** scenes.
3. **NO humans/humanoids**; focus on animals, fantasy creatures, animated objects, and nature.
4. {divergence_instruction}
5. Style: **'Simple, friendly kids animation, bright colors, rounded shapes'** unless modified by `timeline_visual_modifier`.
6. `audio_text`: One concise sentence (max 30 words).
7. `image_prompt`: Descriptive prompt (15–35 words) emphasizing scene elements. **Avoid repeating general style.**
8. `character_description`: Very brief (name and features; < 20 words).

Output only a valid JSON object conforming exactly to this schema:
JSON Schema: ```json
{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}
```"""

        try:
            response = self.client_text.generate_content(
                contents=prompt,
                generation_config=genai.types.GenerationConfig(
                    response_mime_type="application/json", temperature=0.7
                ),
            )
            raw_data = json.loads(response.text)
            validated_data = ChronoWeaveResponse.model_validate(raw_data)
            st.success("Story structure validated successfully!")
            return validated_data

        except json.JSONDecodeError as json_err:
            logger.error(f"JSON decode failed: {json_err}\nResponse: {response.text}")
            st.error(f"🚨 JSON Parsing Error: {json_err}", icon="πŸ“„")
            st.text_area("Response", response.text, height=150)
        except ValidationError as val_err:
            logger.error(f"Pydantic validation error: {val_err}\nData: {json.dumps(raw_data, indent=2)}")
            st.error(f"🚨 Invalid story structure: {val_err}", icon="🧬")
            st.json(raw_data)
        except Exception as e:
            logger.exception("Story generation error:")
            st.error(f"🚨 Error generating story: {e}", icon="πŸ’₯")
        return None

    async def generate_audio(self, text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
        """
        Asynchronously generates audio by wrapping the synchronous generate_content call.
        The call is executed using asyncio.to_thread to avoid blocking.
        """
        task_id = os.path.basename(output_filename).split(".")[0]
        logger.info(f"πŸŽ™οΈ [{task_id}] Generating audio for text: '{text[:60]}...'")

        try:
            # Define a synchronous function for audio generation.
            def sync_generate_audio():
                prompt = f"Narrate directly: \"{text}\""
                response = self.client_audio.generate_content(
                    contents=prompt,
                    generation_config=genai.types.GenerationConfig(
                        response_mime_type="application/octet-stream",
                        temperature=0.7,
                        audio_config={"audio_encoding": "LINEAR16", "sample_rate_hertz": AUDIO_SAMPLING_RATE}
                    )
                )
                return response

            # Execute the synchronous call in a separate thread.
            response = await asyncio.to_thread(sync_generate_audio)

            # Process the response. Adjust as necessary based on the API’s actual response structure.
            if not response or not hasattr(response, "audio_chunk") or not response.audio_chunk.data:
                logger.error(f"❌ [{task_id}] No audio data returned.")
                st.error(f"Audio generation failed for {task_id}: No audio data.", icon="πŸ”Š")
                return None

            audio_data = response.audio_chunk.data
            with wave_file_writer(output_filename) as wf:
                wf.writeframes(audio_data)
            logger.info(f"βœ… [{task_id}] Audio saved: {os.path.basename(output_filename)} ({len(audio_data)} bytes)")
            return output_filename

        except Exception as e:
            logger.exception(f"❌ [{task_id}] Audio generation error: {e}")
            st.error(f"Audio generation failed for {task_id}: {e}", icon="πŸ”Š")
            return None

    async def generate_image_async(self, prompt: str, aspect_ratio: str, task_id: str) -> Optional[Image.Image]:
        """
        Placeholder for image generation.
        Currently logs an error and returns None. Update this function once integrating Vertex AI SDK.
        """
        logger.info(f"πŸ–ΌοΈ [{task_id}] Requesting image for prompt: '{prompt[:70]}...' (Aspect Ratio: {aspect_ratio})")
        logger.error(f"❌ [{task_id}] Image generation not implemented. Update required for Vertex AI.")
        st.error(f"Image generation for {task_id} skipped: Requires Vertex AI SDK implementation.", icon="πŸ–ΌοΈ")
        return None

    async def process_scene(
        self,
        timeline_id: int,
        segment: StorySegment,
        temp_dir: str,
        aspect_ratio: str,
        audio_voice: Optional[str] = None,
    ) -> Tuple[Optional[str], Optional[str], Optional[Any], List[str]]:
        """
        Processes a single scene: concurrently generates image and audio,
        and then creates a video clip if both outputs are available.
        Returns a tuple of (image_path, audio_path, video_clip, [error messages]).
        """
        errors: List[str] = []
        task_id = f"T{timeline_id}_S{segment.scene_id}"
        image_path = os.path.join(temp_dir, f"{task_id}_image.png")
        audio_path = os.path.join(temp_dir, f"{task_id}_audio.wav")
        video_clip = None

        # Launch image and audio generation concurrently.
        image_future = asyncio.create_task(
            self.generate_image_async(
                prompt=f"{segment.image_prompt} Featuring: {segment.character_description} " +
                       (f"Style hint: {segment.timeline_visual_modifier}" if segment.timeline_visual_modifier else ""),
                aspect_ratio=aspect_ratio,
                task_id=task_id,
            )
        )
        audio_future = asyncio.create_task(self.generate_audio(segment.audio_text, audio_path, audio_voice))

        image_result, audio_result = await asyncio.gather(image_future, audio_future)

        if image_result:
            try:
                image_result.save(image_path)
                st.image(image_result, width=180, caption=f"Scene {segment.scene_id + 1}")
            except Exception as e:
                logger.error(f"❌ [{task_id}] Error saving image: {e}")
                errors.append(f"Scene {segment.scene_id + 1}: Image save error.")
        else:
            errors.append(f"Scene {segment.scene_id + 1}: Image generation failed.")

        if audio_result:
            try:
                with open(audio_result, "rb") as ap:
                    st.audio(ap.read(), format="audio/wav")
            except Exception as e:
                logger.warning(f"⚠️ [{task_id}] Audio preview error: {e}")
        else:
            errors.append(f"Scene {segment.scene_id + 1}: Audio generation failed.")

        if not errors and os.path.exists(image_path) and os.path.exists(audio_path):
            try:
                audio_clip = AudioFileClip(audio_path)
                np_img = np.array(Image.open(image_path))
                img_clip = ImageClip(np_img).set_duration(audio_clip.duration)
                video_clip = img_clip.set_audio(audio_clip)
                logger.info(f"βœ… [{task_id}] Video clip created (Duration: {audio_clip.duration:.2f}s).")
            except Exception as e:
                logger.exception(f"❌ [{task_id}] Failed to create video clip: {e}")
                errors.append(f"Scene {segment.scene_id + 1}: Video clip creation failed.")
            finally:
                try:
                    if 'audio_clip' in locals():
                        audio_clip.close()
                    if 'img_clip' in locals():
                        img_clip.close()
                except Exception:
                    pass

        return (
            image_path if os.path.exists(image_path) else None,
            audio_path if os.path.exists(audio_path) else None,
            video_clip,
            errors,
        )

    async def process_timeline(
        self,
        timeline: Timeline,
        temp_dir: str,
        aspect_ratio: str,
        audio_voice: Optional[str] = None,
    ) -> Tuple[Optional[str], List[str]]:
        """
        Processes an entire timeline by concurrently processing all its scenes,
        then assembling a final video if every scene produced a valid clip.
        Returns a tuple of (final video path, list of error messages).
        """
        timeline_id = timeline.timeline_id
        scene_tasks = [
            self.process_scene(timeline_id, segment, temp_dir, aspect_ratio, audio_voice)
            for segment in timeline.segments
        ]
        results = await asyncio.gather(*scene_tasks)
        video_clips = []
        timeline_errors: List[str] = []
        for idx, (img_path, aud_path, clip, errs) in enumerate(results):
            if errs:
                timeline_errors.extend(errs)
            if clip is not None:
                video_clips.append(clip)

        if video_clips and len(video_clips) == len(timeline.segments):
            output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4")
            try:
                final_video = concatenate_videoclips(video_clips, method="compose")
                final_video.write_videofile(
                    output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None
                )
                logger.info(f"βœ… Timeline {timeline_id} video saved: {output_filename}")
                for clip in video_clips:
                    clip.close()
                final_video.close()
                return output_filename, timeline_errors
            except Exception as e:
                logger.exception(f"❌ Timeline {timeline_id} video assembly failed: {e}")
                timeline_errors.append(f"Timeline {timeline_id}: Video assembly failed.")
        else:
            timeline_errors.append(f"Timeline {timeline_id}: Incomplete scenes; skipping video assembly.")
        return None, timeline_errors


# --- Streamlit UI and Main Process ---
def main():
    # API Key Retrieval
    GOOGLE_API_KEY: Optional[str] = None
    try:
        GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
        logger.info("Google API Key loaded from Streamlit secrets.")
    except KeyError:
        GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
        if GOOGLE_API_KEY:
            logger.info("Google API Key loaded from environment variable.")
        else:
            st.error("🚨 **Google API Key Not Found!** Please configure it.", icon="🚨")
            st.stop()

    st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
    st.title("πŸŒ€ ChronoWeave: Advanced Branching Narrative Generator")
    st.markdown("""
    Generate multiple, branching story timelines from a single theme using AI – complete with images and narration.
    *Based on work by Yousif Ahmed. Copyright 2025 Google LLC.*
    """)

    st.sidebar.header("βš™οΈ Configuration")
    if GOOGLE_API_KEY:
        st.sidebar.success("Google API Key Loaded", icon="βœ…")
    else:
        st.sidebar.error("Google API Key Missing!", icon="🚨")

    theme = st.sidebar.text_input("πŸ“– Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
    num_scenes = st.sidebar.slider("🎬 Scenes per Timeline:", min_value=2, max_value=7, value=3)
    num_timelines = st.sidebar.slider("🌿 Number of Timelines:", min_value=1, max_value=4, value=2)
    divergence_prompt = st.sidebar.text_input("↔️ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
    st.sidebar.subheader("🎨 Visual & Audio Settings")
    aspect_ratio = st.sidebar.selectbox("πŸ–ΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
    audio_voice = None

    generate_button = st.sidebar.button("✨ Generate ChronoWeave ✨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
    st.sidebar.markdown("---")
    st.sidebar.info("⏳ Generation may take several minutes.")
    st.sidebar.markdown(f"<small>Txt: {TEXT_MODEL_ID}, Img: {IMAGE_MODEL_ID}, Aud: {AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)

    if generate_button:
        if not theme:
            st.error("Please enter a story theme.", icon="πŸ‘ˆ")
            return

        run_id = str(uuid.uuid4()).split('-')[0]
        temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
        try:
            os.makedirs(temp_dir, exist_ok=True)
            logger.info(f"Created temporary directory: {temp_dir}")
        except OSError as e:
            st.error(f"🚨 Failed to create temporary directory {temp_dir}: {e}", icon="πŸ“‚")
            st.stop()

        # Instantiate ChronoWeaveGenerator and generate story structure.
        generator = ChronoWeaveGenerator(GOOGLE_API_KEY)
        chrono_response = None
        with st.spinner("Generating narrative structure... πŸ€”"):
            chrono_response = generator.generate_story_structure(theme, num_scenes, num_timelines, divergence_prompt)

        if not chrono_response:
            logger.error("Story generation or validation failed.")
            return

        overall_start_time = time.time()
        final_video_paths: Dict[int, str] = {}
        generation_errors: Dict[int, List[str]] = {}

        async def process_all_timelines():
            timeline_tasks = {
                timeline.timeline_id: asyncio.create_task(
                    generator.process_timeline(timeline, temp_dir, aspect_ratio, audio_voice)
                )
                for timeline in chrono_response.timelines
            }
            results = await asyncio.gather(*timeline_tasks.values(), return_exceptions=False)
            return results

        with st.spinner("Processing scenes and assembling videos..."):
            timeline_results = asyncio.run(process_all_timelines())

        for timeline, (video_path, errors) in zip(chrono_response.timelines, timeline_results):
            generation_errors[timeline.timeline_id] = errors
            if video_path:
                final_video_paths[timeline.timeline_id] = video_path

        overall_duration = time.time() - overall_start_time
        if final_video_paths:
            st.success(f"Complete! ({len(final_video_paths)} video(s) created in {overall_duration:.2f}s)")
        else:
            st.error(f"Failed. No final videos generated in {overall_duration:.2f}s")

        st.header("🎬 Generated Timelines")
        if final_video_paths:
            sorted_ids = sorted(final_video_paths.keys())
            num_cols = min(len(sorted_ids), 3)
            cols = st.columns(num_cols)
            for idx, timeline_id in enumerate(sorted_ids):
                video_path = final_video_paths[timeline_id]
                timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
                divergence = timeline_data.divergence_reason if timeline_data else "Unknown"
                with cols[idx % num_cols]:
                    st.subheader(f"Timeline {timeline_id}")
                    st.caption(f"Divergence: {divergence}")
                    try:
                        with open(video_path, "rb") as vf:
                            video_bytes = vf.read()
                        st.video(video_bytes)
                        st.download_button(
                            f"Download Timeline {timeline_id}",
                            video_bytes,
                            file_name=f"timeline_{timeline_id}.mp4",
                            mime="video/mp4",
                            key=f"dl_{timeline_id}"
                        )
                        if generation_errors.get(timeline_id):
                            scene_errs = generation_errors[timeline_id]
                            if scene_errs:
                                with st.expander(f"⚠️ View Scene Issues ({len(scene_errs)})"):
                                    for err in scene_errs:
                                        st.warning(f"- {err}")
                    except FileNotFoundError:
                        st.error(f"Error: Video for Timeline {timeline_id} is missing.", icon="🚨")
                    except Exception as e:
                        st.error(f"Display error for Timeline {timeline_id}: {e}", icon="🚨")
        else:
            st.warning("No final videos were successfully generated.")
            with st.expander("View All Generation Errors", expanded=True):
                for tid, errs in generation_errors.items():
                    if errs:
                        st.error(f"Timeline {tid}:")
                        for msg in errs:
                            st.error(f"  - {msg}")

        st.info(f"Cleaning up temporary files: {temp_dir}")
        try:
            shutil.rmtree(temp_dir)
            st.success("βœ… Temporary files cleaned up.")
            logger.info(f"Temporary directory removed: {temp_dir}")
        except Exception as e:
            st.warning(f"Could not remove temporary files at: {temp_dir}", icon="⚠️")
            logger.error(f"Failed to remove temporary directory {temp_dir}: {e}")
    else:
        st.info("Configure settings and click '✨ Generate ChronoWeave ✨' to start.")


if __name__ == "__main__":
    main()