Spaces:
Running
Running
File size: 30,061 Bytes
247b2e3 463d8c7 18604c2 247b2e3 62f88b4 18604c2 62f88b4 18604c2 62f88b4 aa80548 18604c2 463d8c7 2344b77 62f88b4 18604c2 62f88b4 463d8c7 3c37f6f 90e64d1 a66ce42 62f88b4 3c37f6f 62f88b4 18604c2 59e152e 62f88b4 48eb710 62f88b4 a580b91 9728f29 59e152e a66ce42 247b2e3 3c37f6f 463d8c7 97c7cc1 463d8c7 3c37f6f a580b91 18604c2 48eb710 e9679bf a580b91 3c37f6f e9679bf 62f88b4 9728f29 a580b91 18604c2 463d8c7 18604c2 a580b91 a66ce42 9728f29 a66ce42 a580b91 59e152e a580b91 59e152e a580b91 59e152e 9728f29 a580b91 18604c2 463d8c7 18604c2 59e152e 3c37f6f 394ae41 e9679bf 394ae41 e9679bf 394ae41 463d8c7 18604c2 90e64d1 97c7cc1 463d8c7 3c37f6f 463d8c7 3c37f6f 394ae41 9e990a1 394ae41 463d8c7 3c37f6f 394ae41 463d8c7 18604c2 9e990a1 18604c2 463d8c7 90e64d1 62f88b4 66aa79d a580b91 62f88b4 3c37f6f 18604c2 0b705bc 48eb710 66aa79d 48eb710 463d8c7 48eb710 3c37f6f 48eb710 17235f9 247b2e3 18604c2 247b2e3 463d8c7 247b2e3 aa80548 247b2e3 463d8c7 2344b77 247b2e3 463d8c7 18604c2 a66ce42 18604c2 463d8c7 a66ce42 463d8c7 18604c2 463d8c7 aa80548 18604c2 9728f29 a66ce42 2344b77 a580b91 18604c2 a66ce42 9728f29 a66ce42 97c7cc1 2344b77 97c7cc1 2344b77 97c7cc1 a66ce42 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 9728f29 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 247b2e3 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 18604c2 463d8c7 59e152e 463d8c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
# Copyright 2025 Google LLC.
# Based on work by Yousif Ahmed.
# Concept: ChronoWeave β Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at: https://www.apache.org/licenses/LICENSE-2.0
import streamlit as st
import google.generativeai as genai
import os
import json
import numpy as np
from io import BytesIO
import time
import wave
import contextlib
import asyncio
import uuid # For unique identifiers
import shutil # For directory operations
import logging
# Image handling
from PIL import Image
# Pydantic for data validation
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
from typing import List, Optional, Dict, Any
# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
# Type hints
import typing_extensions as typing
# Async support
import nest_asyncio
nest_asyncio.apply()
# Import Vertex AI SDK and Google credentials support
import vertexai
from vertexai.preview.vision_models import ImageGenerationModel
from google.oauth2 import service_account
# Import gTTS for audio generation
from gtts import gTTS
# --- Logging Setup ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# --- App Configuration ---
st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
st.title("π ChronoWeave: Advanced Branching Narrative Generator")
st.markdown("""
Generate multiple, branching story timelines from a single theme using AI, complete with images and narration.
*Based on the work by Yousif Ahmed. Copyright 2025 Google LLC.*
""")
# --- Constants ---
TEXT_MODEL_ID = "models/gemini-1.5-flash"
AUDIO_MODEL_ID = "models/gemini-1.5-flash"
AUDIO_SAMPLING_RATE = 24000
IMAGE_MODEL_ID = "imagen-3.0-generate-002" # Vertex AI Imagen model identifier
DEFAULT_ASPECT_RATIO = "1:1"
VIDEO_FPS = 24
VIDEO_CODEC = "libx264"
AUDIO_CODEC = "aac"
TEMP_DIR_BASE = ".chrono_temp"
# --- Secrets and Environment Variables ---
# Load GOOGLE_API_KEY
try:
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
logger.info("Google API Key loaded from Streamlit secrets.")
except KeyError:
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
if GOOGLE_API_KEY:
logger.info("Google API Key loaded from environment variable.")
else:
st.error("π¨ **Google API Key Not Found!** Please configure it.", icon="π¨")
st.stop()
# Load PROJECT_ID and LOCATION
PROJECT_ID = st.secrets.get("PROJECT_ID") or os.environ.get("PROJECT_ID")
LOCATION = st.secrets.get("LOCATION") or os.environ.get("LOCATION", "us-central1")
if not PROJECT_ID:
st.error("π¨ **PROJECT_ID not set!** Please add PROJECT_ID to your secrets.", icon="π¨")
st.stop()
# Load and verify SERVICE_ACCOUNT_JSON
service_account_json = os.environ.get("SERVICE_ACCOUNT_JSON", "").strip()
if not service_account_json:
st.error("π¨ **SERVICE_ACCOUNT_JSON is missing or empty!** Please add your service account JSON to your secrets.", icon="π¨")
st.stop()
try:
service_account_info = json.loads(service_account_json)
credentials = service_account.Credentials.from_service_account_info(service_account_info)
logger.info("Service account credentials loaded successfully.")
except Exception as e:
st.error(f"π¨ Failed to load service account JSON: {e}", icon="π¨")
st.stop()
# Initialize Vertex AI with service account credentials
vertexai.init(project=PROJECT_ID, location=LOCATION, credentials=credentials)
# --- Initialize Google Clients for Text and Audio ---
try:
genai.configure(api_key=GOOGLE_API_KEY)
logger.info("Configured google-generativeai with API key.")
client_standard = genai.GenerativeModel(TEXT_MODEL_ID)
logger.info(f"Initialized text/JSON model handle: {TEXT_MODEL_ID}.")
live_model = genai.GenerativeModel(AUDIO_MODEL_ID)
logger.info(f"Initialized audio model handle: {AUDIO_MODEL_ID}.")
except AttributeError as ae:
logger.exception("AttributeError during Client Init.")
st.error(f"π¨ Init Error: {ae}. Update library?", icon="π¨")
st.stop()
except Exception as e:
logger.exception("Failed to initialize Google Clients/Models.")
st.error(f"π¨ Failed Init: {e}", icon="π¨")
st.stop()
# --- Define Pydantic Schemas ---
class StorySegment(BaseModel):
scene_id: int = Field(..., ge=0)
image_prompt: str = Field(..., min_length=10, max_length=250)
audio_text: str = Field(..., min_length=5, max_length=150)
character_description: str = Field(..., max_length=250)
timeline_visual_modifier: Optional[str] = Field(None, max_length=50)
@field_validator('image_prompt')
@classmethod
def image_prompt_no_humans(cls, v: str) -> str:
if any(w in v.lower() for w in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
logger.warning(f"Prompt '{v[:50]}...' may contain humans.")
return v
class Timeline(BaseModel):
timeline_id: int = Field(..., ge=0)
divergence_reason: str = Field(..., min_length=5)
segments: List[StorySegment] = Field(..., min_items=1)
class ChronoWeaveResponse(BaseModel):
core_theme: str = Field(..., min_length=5)
timelines: List[Timeline] = Field(..., min_items=1)
total_scenes_per_timeline: int = Field(..., gt=0)
@model_validator(mode='after')
def check_timeline_segment_count(self) -> 'ChronoWeaveResponse':
expected = self.total_scenes_per_timeline
for i, t in enumerate(self.timelines):
if len(t.segments) != expected:
raise ValueError(f"Timeline {i} ID {t.timeline_id}: Expected {expected}, found {len(t.segments)}.")
return self
# --- Helper Functions ---
@contextlib.contextmanager
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
"""Context manager to safely write WAV files."""
wf = None
try:
wf = wave.open(filename, "wb")
wf.setnchannels(channels)
wf.setsampwidth(sample_width)
wf.setframerate(rate)
yield wf
except Exception as e:
logger.error(f"Error opening/configuring wave file {filename}: {e}")
raise
finally:
if wf:
try:
wf.close()
except Exception as e_close:
logger.error(f"Error closing wave file {filename}: {e_close}")
# --- Audio Generation using gTTS ---
async def generate_audio_live_async(api_text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
"""
Generates audio using gTTS (Google Text-to-Speech).
Saves an MP3 file; MoviePy supports MP3 playback.
"""
task_id = os.path.basename(output_filename).split('.')[0]
logger.info(f"ποΈ [{task_id}] Generating audio via gTTS for text: '{api_text[:60]}...'")
try:
tts = gTTS(text=api_text, lang="en")
mp3_filename = output_filename.replace(".wav", ".mp3")
tts.save(mp3_filename)
logger.info(f"β
[{task_id}] Audio saved: {os.path.basename(mp3_filename)}")
return mp3_filename
except Exception as e:
error_str = str(e)
if "429" in error_str:
st.error(f"Audio generation for {task_id} failed: 429 Too Many Requests from TTS API. Please try again later.", icon="π")
else:
st.error(f"Audio generation for {task_id} failed: {e}", icon="π")
logger.exception(f"β [{task_id}] Audio generation error: {e}")
return None
def generate_story_sequence_chrono(theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = "") -> Optional[ChronoWeaveResponse]:
"""Generates branching story sequences using Gemini structured output and validates with Pydantic."""
st.info(f"π Generating {num_timelines} timeline(s) x {num_scenes} scenes for: '{theme}'...")
logger.info(f"Requesting story structure: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")
divergence_instruction = (
f"Introduce clear points of divergence between timelines, after first scene if possible. "
f"Hint: '{divergence_prompt}'. State divergence reason clearly. **For timeline_id 0, use 'Initial path' or 'Baseline scenario'.**"
)
prompt = f"""Act as narrative designer. Create story for theme: "{theme}". Instructions:
1. Exactly **{num_timelines}** timelines.
2. Each timeline exactly **{num_scenes}** scenes.
3. **NO humans/humanoids**; focus on animals, fantasy creatures, animated objects, nature.
4. {divergence_instruction}.
5. Style: **'Simple, friendly kids animation, bright colors, rounded shapes'**, unless `timeline_visual_modifier` alters.
6. `audio_text`: single concise sentence (max 30 words).
7. `image_prompt`: descriptive, concise (target 15-35 words MAX). Focus on scene elements. **AVOID repeating general style**.
8. `character_description`: VERY brief (name, features). Target < 20 words.
Output: ONLY valid JSON object adhering to schema. No text before/after.
JSON Schema: ```json
{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}
```"""
try:
response = client_standard.generate_content(
contents=prompt,
generation_config=genai.types.GenerationConfig(
response_mime_type="application/json", temperature=0.7
)
)
try:
raw_data = json.loads(response.text)
except json.JSONDecodeError as json_err:
logger.error(f"Failed JSON decode: {json_err}\nResponse:\n{response.text}")
st.error(f"π¨ Failed parse story: {json_err}", icon="π")
st.text_area("Problem Response:", response.text, height=150)
return None
except Exception as e:
logger.error(f"Error processing text: {e}")
st.error(f"π¨ Error processing AI response: {e}", icon="π")
return None
try:
validated_data = ChronoWeaveResponse.model_validate(raw_data)
logger.info("β
Story structure OK!")
st.success("β
Story structure OK!")
return validated_data
except ValidationError as val_err:
logger.error(f"JSON validation failed: {val_err}\nData:\n{json.dumps(raw_data, indent=2)}")
st.error(f"π¨ Gen structure invalid: {val_err}", icon="π§¬")
st.json(raw_data)
return None
except genai.types.generation_types.BlockedPromptException as bpe:
logger.error(f"Story gen blocked: {bpe}")
st.error("π¨ Story prompt blocked.", icon="π«")
return None
except Exception as e:
logger.exception("Error during story gen:")
st.error(f"π¨ Story gen error: {e}", icon="π₯")
return None
def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1", task_id: str = "IMG") -> Optional[Image.Image]:
"""
Generates an image using Vertex AI's Imagen model via the Vertex AI preview API.
Loads the pretrained Imagen model and attempts to generate an image.
If a quota exceeded error occurs, it advises you to request a quota increase.
"""
logger.info(f"πΌοΈ [{task_id}] Requesting image: '{prompt[:70]}...' (Aspect: {aspect_ratio})")
try:
generation_model = ImageGenerationModel.from_pretrained(IMAGE_MODEL_ID)
images = generation_model.generate_images(
prompt=prompt,
number_of_images=1,
aspect_ratio=aspect_ratio,
negative_prompt="",
person_generation="",
safety_filter_level="",
add_watermark=True,
)
image = images[0]._pil_image
logger.info(f"β
[{task_id}] Image generated successfully.")
return image
except Exception as e:
error_str = str(e)
if "Quota exceeded" in error_str:
error_msg = (
"Quota exceeded for image generation requests. "
"Please submit a quota increase request via the Vertex AI console: https://cloud.google.com/vertex-ai/docs/generative-ai/quotas-genai"
)
else:
error_msg = f"Image generation for {task_id} failed: {e}"
logger.exception(f"β [{task_id}] {error_msg}")
st.error(error_msg, icon="πΌοΈ")
return None
# --- Streamlit UI Elements ---
st.sidebar.header("βοΈ Configuration")
if GOOGLE_API_KEY:
st.sidebar.success("Google API Key Loaded", icon="β
")
else:
st.sidebar.error("Google API Key Missing!", icon="π¨")
theme = st.sidebar.text_input("π Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
num_scenes = st.sidebar.slider("π¬ Scenes per Timeline:", min_value=2, max_value=7, value=3)
num_timelines = st.sidebar.slider("πΏ Number of Timelines:", min_value=1, max_value=4, value=2)
divergence_prompt = st.sidebar.text_input("βοΈ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
st.sidebar.subheader("π¨ Visual & Audio Settings")
aspect_ratio = st.sidebar.selectbox("πΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
audio_voice = None
generate_button = st.sidebar.button("β¨ Generate ChronoWeave β¨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.info("β³ Generation can take minutes.")
st.sidebar.markdown(f"<small>Txt:{TEXT_MODEL_ID}, Img:{IMAGE_MODEL_ID}, Aud:{AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)
# --- Main Logic ---
if generate_button:
if not theme:
st.error("Please enter a story theme.", icon="π")
else:
run_id = str(uuid.uuid4()).split('-')[0]
temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
try:
os.makedirs(temp_dir, exist_ok=True)
logger.info(f"Created temp dir: {temp_dir}")
except OSError as e:
st.error(f"π¨ Failed to create temp dir {temp_dir}: {e}", icon="π")
st.stop()
final_video_paths, generation_errors = {}, {}
chrono_response: Optional[ChronoWeaveResponse] = None
with st.spinner("Generating narrative structure... π€"):
chrono_response = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt)
if chrono_response:
overall_start_time = time.time()
all_timelines_successful = True
with st.status("Generating assets and composing videos...", expanded=True) as status:
for timeline_index, timeline in enumerate(chrono_response.timelines):
timeline_id, divergence, segments = timeline.timeline_id, timeline.divergence_reason, timeline.segments
timeline_label = f"Timeline {timeline_id}"
st.subheader(f"Processing {timeline_label}: {divergence}")
logger.info(f"--- Processing {timeline_label} (Idx: {timeline_index}) ---")
generation_errors[timeline_id] = []
temp_image_files, temp_audio_files, video_clips = {}, {}, []
timeline_start_time = time.time()
scene_success_count = 0
for scene_index, segment in enumerate(segments):
scene_id = segment.scene_id
task_id = f"T{timeline_id}_S{scene_id}"
status.update(label=f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
st.markdown(f"--- **Scene {scene_id + 1} ({task_id})** ---")
logger.info(f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
scene_has_error = False
st.write(f"*Img Prompt:* {segment.image_prompt}" + (f" *(Mod: {segment.timeline_visual_modifier})*" if segment.timeline_visual_modifier else ""))
st.write(f"*Audio Text:* {segment.audio_text}")
# --- 2a. Image Generation ---
generated_image: Optional[Image.Image] = None
with st.spinner(f"[{task_id}] Generating image... π¨"):
combined_prompt = segment.image_prompt
if segment.character_description:
combined_prompt += f" Featuring: {segment.character_description}"
if segment.timeline_visual_modifier:
combined_prompt += f" Style hint: {segment.timeline_visual_modifier}."
generated_image = generate_image_imagen(combined_prompt, aspect_ratio, task_id)
if generated_image:
image_path = os.path.join(temp_dir, f"{task_id}_image.png")
try:
generated_image.save(image_path)
temp_image_files[scene_id] = image_path
st.image(generated_image, width=180, caption=f"Scene {scene_id + 1}")
except Exception as e:
logger.error(f"β [{task_id}] Img save error: {e}")
st.error(f"Save image {task_id} failed.", icon="πΎ")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Img save fail.")
else:
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Img gen fail.")
continue
# --- 2b. Audio Generation ---
generated_audio_path: Optional[str] = None
if not scene_has_error:
with st.spinner(f"[{task_id}] Generating audio... π"):
audio_path_temp = os.path.join(temp_dir, f"{task_id}_audio.wav")
try:
generated_audio_path = asyncio.run(generate_audio_live_async(segment.audio_text, audio_path_temp, audio_voice))
except RuntimeError as e:
logger.error(f"β [{task_id}] Asyncio error: {e}")
st.error(f"Asyncio audio error {task_id}: {e}", icon="β‘")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio async err.")
except Exception as e:
logger.exception(f"β [{task_id}] Audio error: {e}")
st.error(f"Audio error {task_id}: {e}", icon="π₯")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio gen err.")
if generated_audio_path:
temp_audio_files[scene_id] = generated_audio_path
try:
with open(generated_audio_path, 'rb') as ap:
st.audio(ap.read(), format='audio/mp3')
except Exception as e:
logger.warning(f"β οΈ [{task_id}] Audio preview error: {e}")
else:
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio gen fail.")
continue
# --- 2c. Create Video Clip ---
if not scene_has_error and scene_id in temp_image_files and scene_id in temp_audio_files:
st.write(f"π¬ Creating clip S{scene_id + 1}...")
img_path, aud_path = temp_image_files[scene_id], temp_audio_files[scene_id]
audio_clip_instance, image_clip_instance, composite_clip = None, None, None
try:
if not os.path.exists(img_path):
raise FileNotFoundError(f"Img missing: {img_path}")
if not os.path.exists(aud_path):
raise FileNotFoundError(f"Aud missing: {aud_path}")
audio_clip_instance = AudioFileClip(aud_path)
np_image = np.array(Image.open(img_path))
image_clip_instance = ImageClip(np_image).set_duration(audio_clip_instance.duration)
composite_clip = image_clip_instance.set_audio(audio_clip_instance)
video_clips.append(composite_clip)
logger.info(f"β
[{task_id}] Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
st.write(f"β
Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
scene_success_count += 1
except Exception as e:
logger.exception(f"β [{task_id}] Failed clip creation: {e}")
st.error(f"Failed clip {task_id}: {e}", icon="π¬")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Clip fail.")
finally:
if audio_clip_instance:
audio_clip_instance.close()
if image_clip_instance:
image_clip_instance.close()
# --- 2d. Assemble Timeline Video ---
timeline_duration = time.time() - timeline_start_time
if video_clips and scene_success_count == len(segments):
status.update(label=f"Composing video {timeline_label}...")
st.write(f"ποΈ Assembling video {timeline_label}...")
logger.info(f"ποΈ Assembling video {timeline_label}...")
output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4")
final_timeline_video = None
try:
final_timeline_video = concatenate_videoclips(video_clips, method="compose")
final_timeline_video.write_videofile(
output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None
)
final_video_paths[timeline_id] = output_filename
logger.info(f"β
[{timeline_label}] Video saved: {os.path.basename(output_filename)}")
st.success(f"β
Video {timeline_label} completed in {timeline_duration:.2f}s.")
except Exception as e:
logger.exception(f"β [{timeline_label}] Video assembly failed: {e}")
st.error(f"Assemble video {timeline_label} failed: {e}", icon="πΌ")
all_timelines_successful = False
generation_errors[timeline_id].append(f"T{timeline_id}: Assembly fail.")
finally:
logger.debug(f"[{timeline_label}] Closing {len(video_clips)} clips...")
for i, clip in enumerate(video_clips):
try:
clip.close()
except Exception as e_close:
logger.warning(f"β οΈ [{timeline_label}] Clip close err {i}: {e_close}")
if final_timeline_video:
try:
final_timeline_video.close()
except Exception as e_close_final:
logger.warning(f"β οΈ [{timeline_label}] Final vid close err: {e_close_final}")
elif not video_clips:
logger.warning(f"[{timeline_label}] No clips. Skip assembly.")
st.warning(f"No scenes for {timeline_label}. No video.", icon="π«")
all_timelines_successful = False
else:
error_count = len(generation_errors[timeline_id])
logger.warning(f"[{timeline_label}] {error_count} scene err(s). Skip assembly.")
st.warning(f"{timeline_label}: {error_count} err(s). Video not assembled.", icon="β οΈ")
all_timelines_successful = False
if generation_errors[timeline_id]:
logger.error(f"Errors {timeline_label}: {generation_errors[timeline_id]}")
# --- End of Timelines Loop ---
overall_duration = time.time() - overall_start_time
if all_timelines_successful and final_video_paths:
status_msg = f"Complete! ({len(final_video_paths)} videos in {overall_duration:.2f}s)"
status.update(label=status_msg, state="complete", expanded=False)
logger.info(status_msg)
elif final_video_paths:
status_msg = f"Partially Complete ({len(final_video_paths)} videos, errors). {overall_duration:.2f}s"
status.update(label=status_msg, state="warning", expanded=True)
logger.warning(status_msg)
else:
status_msg = f"Failed. No videos. {overall_duration:.2f}s"
status.update(label=status_msg, state="error", expanded=True)
logger.error(status_msg)
# --- 3. Display Results ---
st.header("π¬ Generated Timelines")
if final_video_paths:
sorted_timeline_ids = sorted(final_video_paths.keys())
num_cols = min(len(sorted_timeline_ids), 3)
cols = st.columns(num_cols)
for idx, timeline_id in enumerate(sorted_timeline_ids):
col = cols[idx % num_cols]
video_path = final_video_paths[timeline_id]
timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
reason = timeline_data.divergence_reason if timeline_data else "Unknown"
with col:
st.subheader(f"Timeline {timeline_id}")
st.caption(f"Divergence: {reason}")
try:
with open(video_path, 'rb') as vf:
video_bytes = vf.read()
st.video(video_bytes)
logger.info(f"Displaying T{timeline_id}")
st.download_button(f"Download T{timeline_id}", video_bytes, f"timeline_{timeline_id}.mp4", "video/mp4", key=f"dl_{timeline_id}")
if generation_errors.get(timeline_id):
scene_errors = [err for err in generation_errors[timeline_id] if not err.startswith(f"T{timeline_id}:")]
if scene_errors:
with st.expander(f"β οΈ View {len(scene_errors)} Scene Issues"):
for err in scene_errors:
st.warning(f"- {err}")
except FileNotFoundError:
logger.error(f"Video missing: {video_path}")
st.error(f"Error: Video missing T{timeline_id}.", icon="π¨")
except Exception as e:
logger.exception(f"Display error {video_path}: {e}")
st.error(f"Display error T{timeline_id}: {e}", icon="π¨")
else:
st.warning("No final videos were successfully generated.")
st.subheader("Summary of Generation Issues")
has_errors = any(generation_errors.values())
if has_errors:
with st.expander("View All Errors", expanded=True):
for tid, errors in generation_errors.items():
if errors:
st.error(f"**Timeline {tid}:**")
for msg in errors:
st.error(f" - {msg}")
else:
st.info("No generation errors recorded.")
# --- 4. Cleanup ---
st.info(f"Attempting cleanup: {temp_dir}")
try:
shutil.rmtree(temp_dir)
logger.info(f"β
Temp dir removed: {temp_dir}")
st.success("β
Temp files cleaned.")
except Exception as e:
logger.error(f"β οΈ Failed to remove temp dir {temp_dir}: {e}")
st.warning(f"Could not remove temp files: {temp_dir}.", icon="β οΈ")
elif not chrono_response:
logger.error("Story gen/validation failed.")
else:
st.error("Unexpected issue post-gen.", icon="π")
logger.error("Chrono_response truthy but invalid.")
else:
st.info("Configure settings and click 'β¨ Generate ChronoWeave β¨' to start.")
|