File size: 9,370 Bytes
6e8a7d4 e207857 6e8a7d4 28e2398 e207857 6e8a7d4 28e2398 e207857 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 57776e0 28e2398 6e8a7d4 28e2398 16f65e2 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 e207857 6e8a7d4 28e2398 6e8a7d4 e207857 16f65e2 6e8a7d4 28e2398 6e8a7d4 e207857 16f65e2 6e8a7d4 28e2398 6e8a7d4 28e2398 57776e0 28e2398 57776e0 28e2398 57776e0 6e8a7d4 e207857 16f65e2 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 28e2398 57776e0 6e8a7d4 e207857 16f65e2 6e8a7d4 28e2398 6e8a7d4 28e2398 6e8a7d4 57776e0 28e2398 6e8a7d4 57776e0 28e2398 6e8a7d4 57776e0 28e2398 6e8a7d4 e207857 57776e0 28e2398 16f65e2 28e2398 e207857 6e8a7d4 28e2398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
import numpy as np
import pandas as pd
from smolagents import CodeAgent, tool
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import os
from groq import Groq
import base64
import io
class GroqLLM:
"""Compatible LLM interface for smolagents CodeAgent"""
def __init__(self, model_name="llama-3.1-8B-Instant"):
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
self.model_name = model_name
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
"""Make the class callable as required by smolagents"""
try:
# Handle different prompt formats
if isinstance(prompt, (dict, list)):
prompt_str = str(prompt)
else:
prompt_str = str(prompt)
# Create a properly formatted message
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[{
"role": "user",
"content": prompt_str
}],
temperature=0.7,
max_tokens=1024,
stream=False
)
# Ensure the response is properly formatted
if completion.choices and hasattr(completion.choices[0].message, 'content'):
return completion.choices[0].message.content
else:
return "Error: No valid response generated from the model."
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(error_msg)
return error_msg
class DataAnalysisAgent(CodeAgent):
"""Extended CodeAgent with dataset awareness"""
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
super().__init__(*args, **kwargs)
self._dataset = dataset
@property
def dataset(self) -> pd.DataFrame:
"""Access the stored dataset"""
return self._dataset
def run(self, prompt: str) -> str:
"""Override run method to include dataset context"""
dataset_info = f"""
Dataset Shape: {self.dataset.shape}
Columns: {', '.join(self.dataset.columns)}
Data Types: {self.dataset.dtypes.to_dict()}
"""
enhanced_prompt = f"""
Analyze the following dataset:
{dataset_info}
Task: {prompt}
Use the provided tools to analyze this specific dataset and return detailed results.
"""
return super().run(enhanced_prompt)
@tool
def analyze_basic_stats(data: pd.DataFrame) -> str:
"""Calculate basic statistical measures for numerical columns in the dataset."""
if data is None:
data = tool.agent.dataset
stats = {}
numeric_cols = data.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
stats[col] = {
'mean': float(data[col].mean()),
'median': float(data[col].median()),
'std': float(data[col].std()),
'skew': float(data[col].skew()),
'missing': int(data[col].isnull().sum())
}
return str(stats)
@tool
def generate_correlation_matrix(data: pd.DataFrame) -> str:
"""Generate a visual correlation matrix for numerical columns in the dataset."""
if data is None:
data = tool.agent.dataset
numeric_data = data.select_dtypes(include=[np.number])
plt.figure(figsize=(10, 8))
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
@tool
def analyze_categorical_columns(data: pd.DataFrame) -> str:
"""Analyze categorical columns in the dataset for distribution and frequencies."""
if data is None:
data = tool.agent.dataset
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
analysis = {}
for col in categorical_cols:
analysis[col] = {
'unique_values': int(data[col].nunique()),
'top_categories': data[col].value_counts().head(5).to_dict(),
'missing': int(data[col].isnull().sum())
}
return str(analysis)
@tool
def suggest_features(data: pd.DataFrame) -> str:
"""Suggest potential feature engineering steps based on data characteristics."""
if data is None:
data = tool.agent.dataset
suggestions = []
numeric_cols = data.select_dtypes(include=[np.number]).columns
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
if len(numeric_cols) >= 2:
suggestions.append("Consider creating interaction terms between numerical features")
if len(categorical_cols) > 0:
suggestions.append("Consider one-hot encoding for categorical variables")
for col in numeric_cols:
if data[col].skew() > 1 or data[col].skew() < -1:
suggestions.append(f"Consider log transformation for {col} due to skewness")
return '\n'.join(suggestions)
def main():
st.title("Data Analysis Assistant")
st.write("Upload your dataset and get automated analysis with natural language interaction.")
# Initialize session state
if 'data' not in st.session_state:
st.session_state['data'] = None
if 'agent' not in st.session_state:
st.session_state['agent'] = None
# Drag-and-drop file upload
uploaded_file = st.file_uploader("Drag and drop a CSV file here", type="csv")
try:
if uploaded_file is not None:
with st.spinner('Loading and processing your data...'):
# Load the dataset
data = pd.read_csv(uploaded_file)
st.session_state['data'] = data
# Initialize the agent with the dataset
st.session_state['agent'] = DataAnalysisAgent(
dataset=data,
tools=[analyze_basic_stats, generate_correlation_matrix,
analyze_categorical_columns, suggest_features],
model=GroqLLM(),
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
)
st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
st.subheader("Data Preview")
st.dataframe(data.head())
if st.session_state['data'] is not None:
analysis_type = st.selectbox(
"Choose analysis type",
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
"Feature Engineering", "Custom Question"]
)
if analysis_type == "Basic Statistics":
with st.spinner('Analyzing basic statistics...'):
result = st.session_state['agent'].run(
"Use the analyze_basic_stats tool to analyze this dataset and "
"provide insights about the numerical distributions."
)
st.write(result)
elif analysis_type == "Correlation Analysis":
with st.spinner('Generating correlation matrix...'):
result = st.session_state['agent'].run(
"Use the generate_correlation_matrix tool to analyze correlations "
"and explain any strong relationships found."
)
if isinstance(result, str) and result.startswith('data:image') or ',' in result:
st.image(f"data:image/png;base64,{result.split(',')[-1]}")
else:
st.write(result)
elif analysis_type == "Categorical Analysis":
with st.spinner('Analyzing categorical columns...'):
result = st.session_state['agent'].run(
"Use the analyze_categorical_columns tool to examine the "
"categorical variables and explain the distributions."
)
st.write(result)
elif analysis_type == "Feature Engineering":
with st.spinner('Generating feature suggestions...'):
result = st.session_state['agent'].run(
"Use the suggest_features tool to recommend potential "
"feature engineering steps for this dataset."
)
st.write(result)
elif analysis_type == "Custom Question":
question = st.text_input("What would you like to know about your data?")
if question:
with st.spinner('Analyzing...'):
result = st.session_state['agent'].run(question)
st.write(result)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main() |