File size: 9,370 Bytes
6e8a7d4
 
e207857
6e8a7d4
 
 
 
 
 
28e2398
 
e207857
6e8a7d4
28e2398
e207857
6e8a7d4
 
28e2398
6e8a7d4
28e2398
6e8a7d4
28e2398
6e8a7d4
 
 
 
28e2398
 
6e8a7d4
 
28e2398
 
 
 
6e8a7d4
57776e0
28e2398
6e8a7d4
28e2398
16f65e2
 
 
 
 
28e2398
6e8a7d4
28e2398
 
 
6e8a7d4
 
28e2398
6e8a7d4
 
 
28e2398
6e8a7d4
 
28e2398
6e8a7d4
e207857
6e8a7d4
28e2398
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e207857
16f65e2
6e8a7d4
 
28e2398
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8a7d4
 
e207857
16f65e2
6e8a7d4
 
28e2398
6e8a7d4
28e2398
57776e0
28e2398
 
 
57776e0
28e2398
57776e0
 
6e8a7d4
 
e207857
16f65e2
6e8a7d4
 
28e2398
 
6e8a7d4
28e2398
6e8a7d4
 
28e2398
 
 
6e8a7d4
28e2398
57776e0
6e8a7d4
 
e207857
16f65e2
6e8a7d4
 
28e2398
6e8a7d4
 
28e2398
 
6e8a7d4
57776e0
28e2398
6e8a7d4
57776e0
28e2398
6e8a7d4
 
57776e0
28e2398
 
6e8a7d4
 
e207857
57776e0
28e2398
 
 
 
 
 
 
16f65e2
 
28e2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e207857
6e8a7d4
28e2398
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import streamlit as st
import numpy as np
import pandas as pd
from smolagents import CodeAgent, tool
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import os
from groq import Groq
import base64
import io

class GroqLLM:
    """Compatible LLM interface for smolagents CodeAgent"""
    def __init__(self, model_name="llama-3.1-8B-Instant"):
        self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
        self.model_name = model_name
    
    def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
        """Make the class callable as required by smolagents"""
        try:
            # Handle different prompt formats
            if isinstance(prompt, (dict, list)):
                prompt_str = str(prompt)
            else:
                prompt_str = str(prompt)
            
            # Create a properly formatted message
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=[{
                    "role": "user",
                    "content": prompt_str
                }],
                temperature=0.7,
                max_tokens=1024,
                stream=False
            )
            
            # Ensure the response is properly formatted
            if completion.choices and hasattr(completion.choices[0].message, 'content'):
                return completion.choices[0].message.content
            else:
                return "Error: No valid response generated from the model."
            
        except Exception as e:
            error_msg = f"Error generating response: {str(e)}"
            print(error_msg)
            return error_msg

class DataAnalysisAgent(CodeAgent):
    """Extended CodeAgent with dataset awareness"""
    def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._dataset = dataset
    
    @property
    def dataset(self) -> pd.DataFrame:
        """Access the stored dataset"""
        return self._dataset

    def run(self, prompt: str) -> str:
        """Override run method to include dataset context"""
        dataset_info = f"""
        Dataset Shape: {self.dataset.shape}
        Columns: {', '.join(self.dataset.columns)}
        Data Types: {self.dataset.dtypes.to_dict()}
        """
        enhanced_prompt = f"""
        Analyze the following dataset:
        {dataset_info}
        
        Task: {prompt}
        
        Use the provided tools to analyze this specific dataset and return detailed results.
        """
        return super().run(enhanced_prompt)

@tool
def analyze_basic_stats(data: pd.DataFrame) -> str:
    """Calculate basic statistical measures for numerical columns in the dataset."""
    if data is None:
        data = tool.agent.dataset
    
    stats = {}
    numeric_cols = data.select_dtypes(include=[np.number]).columns
    
    for col in numeric_cols:
        stats[col] = {
            'mean': float(data[col].mean()),
            'median': float(data[col].median()),
            'std': float(data[col].std()),
            'skew': float(data[col].skew()),
            'missing': int(data[col].isnull().sum())
        }
    
    return str(stats)

@tool
def generate_correlation_matrix(data: pd.DataFrame) -> str:
    """Generate a visual correlation matrix for numerical columns in the dataset."""
    if data is None:
        data = tool.agent.dataset
        
    numeric_data = data.select_dtypes(include=[np.number])
    
    plt.figure(figsize=(10, 8))
    sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Matrix')
    
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    plt.close()
    return base64.b64encode(buf.getvalue()).decode()

@tool
def analyze_categorical_columns(data: pd.DataFrame) -> str:
    """Analyze categorical columns in the dataset for distribution and frequencies."""
    if data is None:
        data = tool.agent.dataset
        
    categorical_cols = data.select_dtypes(include=['object', 'category']).columns
    analysis = {}
    
    for col in categorical_cols:
        analysis[col] = {
            'unique_values': int(data[col].nunique()),
            'top_categories': data[col].value_counts().head(5).to_dict(),
            'missing': int(data[col].isnull().sum())
        }
    
    return str(analysis)

@tool
def suggest_features(data: pd.DataFrame) -> str:
    """Suggest potential feature engineering steps based on data characteristics."""
    if data is None:
        data = tool.agent.dataset
        
    suggestions = []
    numeric_cols = data.select_dtypes(include=[np.number]).columns
    categorical_cols = data.select_dtypes(include=['object', 'category']).columns
    
    if len(numeric_cols) >= 2:
        suggestions.append("Consider creating interaction terms between numerical features")
    
    if len(categorical_cols) > 0:
        suggestions.append("Consider one-hot encoding for categorical variables")
        
    for col in numeric_cols:
        if data[col].skew() > 1 or data[col].skew() < -1:
            suggestions.append(f"Consider log transformation for {col} due to skewness")
    
    return '\n'.join(suggestions)

def main():
    st.title("Data Analysis Assistant")
    st.write("Upload your dataset and get automated analysis with natural language interaction.")
    
    # Initialize session state
    if 'data' not in st.session_state:
        st.session_state['data'] = None
    if 'agent' not in st.session_state:
        st.session_state['agent'] = None
    
    # Drag-and-drop file upload
    uploaded_file = st.file_uploader("Drag and drop a CSV file here", type="csv")
    
    try:
        if uploaded_file is not None:
            with st.spinner('Loading and processing your data...'):
                # Load the dataset
                data = pd.read_csv(uploaded_file)
                st.session_state['data'] = data
                
                # Initialize the agent with the dataset
                st.session_state['agent'] = DataAnalysisAgent(
                    dataset=data,
                    tools=[analyze_basic_stats, generate_correlation_matrix, 
                           analyze_categorical_columns, suggest_features],
                    model=GroqLLM(),
                    additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
                )
                
                st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
                st.subheader("Data Preview")
                st.dataframe(data.head())
        
        if st.session_state['data'] is not None:
            analysis_type = st.selectbox(
                "Choose analysis type",
                ["Basic Statistics", "Correlation Analysis", "Categorical Analysis", 
                 "Feature Engineering", "Custom Question"]
            )
            
            if analysis_type == "Basic Statistics":
                with st.spinner('Analyzing basic statistics...'):
                    result = st.session_state['agent'].run(
                        "Use the analyze_basic_stats tool to analyze this dataset and "
                        "provide insights about the numerical distributions."
                    )
                    st.write(result)
                    
            elif analysis_type == "Correlation Analysis":
                with st.spinner('Generating correlation matrix...'):
                    result = st.session_state['agent'].run(
                        "Use the generate_correlation_matrix tool to analyze correlations "
                        "and explain any strong relationships found."
                    )
                    if isinstance(result, str) and result.startswith('data:image') or ',' in result:
                        st.image(f"data:image/png;base64,{result.split(',')[-1]}")
                    else:
                        st.write(result)
                    
            elif analysis_type == "Categorical Analysis":
                with st.spinner('Analyzing categorical columns...'):
                    result = st.session_state['agent'].run(
                        "Use the analyze_categorical_columns tool to examine the "
                        "categorical variables and explain the distributions."
                    )
                    st.write(result)
                    
            elif analysis_type == "Feature Engineering":
                with st.spinner('Generating feature suggestions...'):
                    result = st.session_state['agent'].run(
                        "Use the suggest_features tool to recommend potential "
                        "feature engineering steps for this dataset."
                    )
                    st.write(result)
                    
            elif analysis_type == "Custom Question":
                question = st.text_input("What would you like to know about your data?")
                if question:
                    with st.spinner('Analyzing...'):
                        result = st.session_state['agent'].run(question)
                        st.write(result)
                        
    except Exception as e:
        st.error(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    main()