File size: 24,450 Bytes
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bdee1
2311473
 
 
 
a9bdee1
 
2311473
6e8a7d4
 
a9bdee1
6e8a7d4
2311473
 
 
a9bdee1
 
2311473
a9bdee1
 
2311473
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bdee1
6e8a7d4
2311473
 
 
a9bdee1
 
 
 
2311473
6e8a7d4
 
 
a9bdee1
6e8a7d4
 
2311473
 
a9bdee1
 
2311473
6e8a7d4
 
 
2311473
 
 
a9bdee1
 
2311473
a9bdee1
 
2311473
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f60d18c
2311473
 
 
 
 
 
 
 
a9bdee1
 
 
 
 
 
 
 
 
2311473
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f60d18c
2311473
 
 
 
 
 
 
a9bdee1
 
 
 
 
 
 
 
 
2311473
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f60d18c
2311473
 
 
 
 
 
 
a9bdee1
 
 
 
 
 
 
 
 
2311473
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f60d18c
2311473
 
 
 
 
 
a9bdee1
 
 
 
 
 
 
 
 
2311473
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f60d18c
2311473
 
 
 
 
 
a9bdee1
 
 
 
 
 
 
 
 
 
 
 
2311473
6e8a7d4
 
 
f60d18c
 
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2311473
 
 
 
 
 
a9bdee1
 
 
2311473
a9bdee1
 
2311473
6e8a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# app.py

import streamlit as st
import numpy as np
import pandas as pd
from smolagents import CodeAgent, tool
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
import os
from groq import Groq
from dataclasses import dataclass
import tempfile
import base64
import io
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc
import joblib
import pdfkit  # Ensure wkhtmltopdf is available in the environment
import uuid  # For generating unique report IDs

# ------------------------------
# Language Model Interface
# ------------------------------
class GroqLLM:
    """Enhanced LLM interface with support for generating natural language summaries."""

    def __init__(self, model_name: str = "llama-3.1-8B-Instant"):
        """
        Initialize the GroqLLM with a specified model.

        Args:
            model_name (str): The name of the language model to use.
        """
        self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
        self.model_name = model_name

    def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
        """
        Make the class callable as required by smolagents.

        Args:
            prompt (Union[str, dict, List[Dict]]): The input prompt for the language model.

        Returns:
            str: The generated response from the language model.
        """
        try:
            # Handle different prompt formats
            if isinstance(prompt, (dict, list)):
                prompt_str = str(prompt)
            else:
                prompt_str = str(prompt)
            
            # Create a properly formatted message
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=[{
                    "role": "user",
                    "content": prompt_str
                }],
                temperature=0.7,
                max_tokens=1500,  # Increased tokens for detailed responses
                stream=False
            )
            
            return completion.choices[0].message.content if completion.choices else "Error: No response generated"
            
        except Exception as e:
            error_msg = f"Error generating response: {str(e)}"
            print(error_msg)
            return error_msg

# ------------------------------
# Data Analysis Agent
# ------------------------------
class DataAnalysisAgent(CodeAgent):
    """Extended CodeAgent with dataset awareness and predictive analytics capabilities."""

    def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
        """
        Initialize the DataAnalysisAgent with the provided dataset.

        Args:
            dataset (pd.DataFrame): The dataset to analyze.
            *args: Variable length argument list.
            **kwargs: Arbitrary keyword arguments.
        """
        super().__init__(*args, **kwargs)
        self._dataset = dataset
        self.models = {}  # To store trained models

    @property
    def dataset(self) -> pd.DataFrame:
        """Access the stored dataset.

        Returns:
            pd.DataFrame: The dataset stored in the agent.
        """
        return self._dataset

    def run(self, prompt: str) -> str:
        """
        Override the run method to include dataset context and support predictive tasks.

        Args:
            prompt (str): The task prompt for analysis.

        Returns:
            str: The result of the analysis.
        """
        dataset_info = f"""
        Dataset Shape: {self.dataset.shape}
        Columns: {', '.join(self.dataset.columns)}
        Data Types: {self.dataset.dtypes.to_dict()}
        """
        enhanced_prompt = f"""
        Analyze the following dataset:
        {dataset_info}
        
        Task: {prompt}
        
        Use the provided tools to analyze this specific dataset and return detailed results.
        """
        return super().run(enhanced_prompt)

# ------------------------------
# Tool Definitions
# ------------------------------

@tool
def analyze_basic_stats(data: Optional[pd.DataFrame] = None) -> str:
    """
    Calculate and visualize basic statistical measures for numerical columns.

    This function computes fundamental statistical metrics including mean, median,
    standard deviation, skewness, and counts of missing values for all numerical
    columns in the provided DataFrame. It also generates a bar chart visualizing
    the mean, median, and standard deviation for each numerical feature.

    Args:
        data (Optional[pd.DataFrame], optional):
            A pandas DataFrame containing the dataset to analyze. 
            If None, the agent's stored dataset will be used.
            The DataFrame should contain at least one numerical column
            for meaningful analysis.

    Returns:
        str: A markdown-formatted string containing the statistics and the generated plot.
    """
    if data is None:
        data = tool.agent.dataset
    
    stats = {}
    numeric_cols = data.select_dtypes(include=[np.number]).columns
    
    for col in numeric_cols:
        stats[col] = {
            'mean': float(data[col].mean()),
            'median': float(data[col].median()),
            'std': float(data[col].std()),
            'skew': float(data[col].skew()),
            'missing': int(data[col].isnull().sum())
        }
    
    # Generate a summary DataFrame
    stats_df = pd.DataFrame(stats).T
    stats_df.reset_index(inplace=True)
    stats_df.rename(columns={'index': 'Feature'}, inplace=True)
    
    # Plotting basic statistics
    fig, ax = plt.subplots(figsize=(10, 6))
    stats_df.set_index('Feature')[['mean', 'median', 'std']].plot(kind='bar', ax=ax)
    plt.title('Basic Statistics')
    plt.ylabel('Values')
    plt.tight_layout()
    
    # Save plot to buffer
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    plt.close()
    stats_plot = base64.b64encode(buf.getvalue()).decode()
    
    return f"### Basic Statistics\n{stats_df.to_markdown()} \n\n![Basic Statistics](data:image/png;base64,{stats_plot})"

@tool
def generate_correlation_matrix(data: Optional[pd.DataFrame] = None) -> str:
    """
    Generate an interactive correlation matrix using Plotly.

    This function creates an interactive heatmap visualization showing the correlations between
    all numerical columns in the dataset. Users can hover over cells to see correlation values
    and interact with the plot (zoom, pan).

    Args:
        data (Optional[pd.DataFrame], optional):
            A pandas DataFrame containing the dataset to analyze. 
            If None, the agent's stored dataset will be used.
            The DataFrame should contain at least two numerical columns
            for correlation analysis.

    Returns:
        str: An HTML string representing the interactive correlation matrix plot.
    """
    if data is None:
        data = tool.agent.dataset
    
    numeric_data = data.select_dtypes(include=[np.number])
    corr = numeric_data.corr()
    
    fig = px.imshow(corr,
                    text_auto=True,
                    aspect="auto",
                    color_continuous_scale='RdBu',
                    title='Correlation Matrix')
    
    fig.update_layout(width=800, height=600)
    
    # Convert Plotly figure to HTML div
    correlation_html = fig.to_html(full_html=False)
    
    return correlation_html

@tool
def analyze_categorical_columns(data: Optional[pd.DataFrame] = None) -> str:
    """
    Analyze categorical columns with visualizations.

    This function examines categorical columns to identify unique values, top categories,
    and missing value counts. It also generates bar charts for the top 5 categories in each
    categorical feature.

    Args:
        data (Optional[pd.DataFrame], optional):
            A pandas DataFrame containing the dataset to analyze. 
            If None, the agent's stored dataset will be used.
            The DataFrame should contain at least one categorical column
            for meaningful analysis.

    Returns:
        str: A markdown-formatted string containing analysis results and embedded plots.
    """
    if data is None:
        data = tool.agent.dataset
    
    categorical_cols = data.select_dtypes(include=['object', 'category']).columns
    analysis = {}
    plots = ""
    
    for col in categorical_cols:
        unique_vals = data[col].nunique()
        top_categories = data[col].value_counts().head(5).to_dict()
        missing = data[col].isnull().sum()
        
        analysis[col] = {
            'unique_values': int(unique_vals),
            'top_categories': top_categories,
            'missing': int(missing)
        }
        
        # Generate bar chart for top categories
        fig, ax = plt.subplots(figsize=(8, 4))
        sns.countplot(data=data, x=col, order=data[col].value_counts().iloc[:5].index, ax=ax)
        plt.title(f'Top 5 Categories in {col}')
        plt.xticks(rotation=45)
        plt.tight_layout()
        
        buf = io.BytesIO()
        plt.savefig(buf, format='png')
        plt.close()
        plot_img = base64.b64encode(buf.getvalue()).decode()
        
        plots += f"### {col}\n"
        plots += f"- **Unique Values:** {unique_vals}\n"
        plots += f"- **Missing Values:** {missing}\n"
        plots += f"- **Top Categories:** {top_categories}\n"
        plots += f"![Top Categories in {col}](data:image/png;base64,{plot_img})\n\n"
    
    return plots + f"### Categorical Columns Analysis\n{pd.DataFrame(analysis).T.to_markdown()}"

@tool
def suggest_features(data: Optional[pd.DataFrame] = None) -> str:
    """
    Suggest potential feature engineering steps based on data characteristics.

    This function analyzes the dataset's structure and statistical properties to
    recommend possible feature engineering steps that could improve model performance.

    Args:
        data (Optional[pd.DataFrame], optional):
            A pandas DataFrame containing the dataset to analyze. 
            If None, the agent's stored dataset will be used.
            The DataFrame can contain both numerical and categorical columns.

    Returns:
        str: A string containing suggestions for feature engineering based on
             the characteristics of the input data.
    """
    if data is None:
        data = tool.agent.dataset
    
    suggestions = []
    numeric_cols = data.select_dtypes(include=[np.number]).columns
    categorical_cols = data.select_dtypes(include=['object', 'category']).columns
    
    # Interaction terms
    if len(numeric_cols) >= 2:
        suggestions.append("โ€ข **Interaction Terms:** Consider creating interaction terms between numerical features to capture combined effects.")
    
    # Encoding categorical variables
    if len(categorical_cols) > 0:
        suggestions.append("โ€ข **One-Hot Encoding:** Apply one-hot encoding to categorical variables to convert them into numerical format.")
        suggestions.append("โ€ข **Label Encoding:** For ordinal categorical variables, consider label encoding to maintain order information.")
    
    # Handling skewness
    for col in numeric_cols:
        if data[col].skew() > 1 or data[col].skew() < -1:
            suggestions.append(f"โ€ข **Log Transformation:** Apply log transformation to `{col}` to reduce skewness and stabilize variance.")
    
    # Missing value imputation
    for col in data.columns:
        if data[col].isnull().sum() > 0:
            suggestions.append(f"โ€ข **Imputation:** Consider imputing missing values in `{col}` using mean, median, or advanced imputation techniques.")
    
    # Feature scaling
    suggestions.append("โ€ข **Feature Scaling:** Apply feature scaling (Standardization or Normalization) to numerical features to ensure uniformity.")
    
    return "\n".join(suggestions)

@tool
def predictive_analysis(data: Optional[pd.DataFrame] = None, target: Optional[str] = None) -> str:
    """
    Perform predictive analytics by training a classification model.

    This function builds a classification model using Random Forest, evaluates its performance,
    and provides detailed metrics and visualizations such as the confusion matrix and ROC curve.

    Args:
        data (Optional[pd.DataFrame], optional):
            A pandas DataFrame containing the dataset to analyze. 
            If None, the agent's stored dataset will be used.
            The DataFrame should contain the target variable for prediction.
        target (Optional[str], optional):
            The name of the target variable column in the dataset.
            If None, the agent must provide the target variable through the prompt.

    Returns:
        str: A markdown-formatted string containing the classification report, confusion matrix,
             ROC curve, AUC score, and a unique Model ID.
    """
    if data is None:
        data = tool.agent.dataset
    
    if target is None or target not in data.columns:
        return f"Error: Target column not specified or `{target}` not found in the dataset."
    
    # Handle categorical target
    if data[target].dtype == 'object' or data[target].dtype.name == 'category':
        data[target] = data[target].astype('category').cat.codes
    
    # Drop rows with missing target
    data = data.dropna(subset=[target])
    
    # Separate features and target
    X = data.drop(columns=[target])
    y = data[target]
    
    # Handle missing values (simple imputation)
    X = X.fillna(X.median())
    
    # Encode categorical variables
    X = pd.get_dummies(X, drop_first=True)
    
    # Split data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # Train a Random Forest Classifier (as an example)
    from sklearn.ensemble import RandomForestClassifier
    clf = RandomForestClassifier(n_estimators=100, random_state=42)
    clf.fit(X_train, y_train)
    
    # Predictions
    y_pred = clf.predict(X_test)
    y_proba = clf.predict_proba(X_test)[:,1]
    
    # Evaluation
    report = classification_report(y_test, y_pred, output_dict=True)
    report_df = pd.DataFrame(report).transpose()
    
    # Confusion Matrix
    cm = confusion_matrix(y_test, y_pred)
    fig_cm = px.imshow(cm, text_auto=True, labels=dict(x="Predicted", y="Actual", color="Count"),
                       x=["Negative", "Positive"], y=["Negative", "Positive"],
                       title="Confusion Matrix")
    
    # ROC Curve
    fpr, tpr, thresholds = roc_curve(y_test, y_proba)
    roc_auc = auc(fpr, tpr)
    fig_roc = go.Figure()
    fig_roc.add_trace(go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC Curve (AUC = {roc_auc:.2f})'))
    fig_roc.add_trace(go.Scatter(x=[0,1], y=[0,1], mode='lines', name='Random Guess', line=dict(dash='dash')))
    fig_roc.update_layout(title='Receiver Operating Characteristic (ROC) Curve',
                          xaxis_title='False Positive Rate',
                          yaxis_title='True Positive Rate')
    
    # Save models for potential future use
    model_id = str(uuid.uuid4())
    with tempfile.NamedTemporaryFile(delete=False, suffix='.joblib') as tmp_model_file:
        joblib.dump(clf, tmp_model_file.name)
        # In a real-world scenario, you'd store this in a persistent storage
    tool.agent.models[model_id] = clf  # Storing in agent's models dict
    
    # Generate HTML for plots
    cm_html = fig_cm.to_html(full_html=False)
    roc_html = fig_roc.to_html(full_html=False)
    
    # Generate report summary
    summary = f"""
    ### Predictive Analytics Report for Target: `{target}`
    
    **Model Used:** Random Forest Classifier
    
    **Classification Report:**
    {report_df.to_markdown()}
    
    **Confusion Matrix:**
    {cm_html}
    
    **ROC Curve:**
    {roc_html}
    
    **AUC Score:** {roc_auc:.2f}
    
    **Model ID:** `{model_id}`
    
    *You can use this Model ID to retrieve or update the model in future analyses.*
    """
    
    return summary

# ------------------------------
# Report Exporting Function
# ------------------------------
def export_report(content: str, filename: str):
    """
    Export the given content as a PDF report.

    This function converts markdown content into a PDF file using pdfkit and provides
    a download button for users to obtain the report.

    Args:
        content (str): The markdown content to be included in the PDF report.
        filename (str): The desired name for the exported PDF file.

    Returns:
        None
    """
    # Save content to a temporary HTML file
    with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as tmp_file:
        tmp_file.write(content.encode('utf-8'))
        tmp_file_path = tmp_file.name
    
    # Define output PDF path
    pdf_path = f"{filename}.pdf"
    
    # Convert HTML to PDF using pdfkit
    try:
        # Configure pdfkit options for HuggingFace Spaces environment
        config = pdfkit.configuration()
        pdfkit.from_file(tmp_file_path, pdf_path, configuration=config)
        with open(pdf_path, "rb") as pdf_file:
            PDFbyte = pdf_file.read()
        
        # Provide download link
        st.download_button(label="๐Ÿ“ฅ Download Report as PDF",
                           data=PDFbyte,
                           file_name=pdf_path,
                           mime='application/octet-stream')
    except Exception as e:
        st.error(f"โš ๏ธ Error exporting report: {str(e)}")
    finally:
        os.remove(tmp_file_path)
        if os.path.exists(pdf_path):
            os.remove(pdf_path)

# ------------------------------
# Main Application Function
# ------------------------------
def main():
    st.set_page_config(page_title="๐Ÿ“Š Business Intelligence Assistant", layout="wide")
    st.title("๐Ÿ“Š **Business Intelligence Assistant**")
    st.write("Upload your dataset and receive comprehensive analyses, interactive visualizations, and predictive insights.")
    
    # Initialize session state
    if 'data' not in st.session_state:
        st.session_state['data'] = None
    if 'agent' not in st.session_state:
        st.session_state['agent'] = None
    if 'report_content' not in st.session_state:
        st.session_state['report_content'] = ""
    
    # File Uploader
    uploaded_file = st.file_uploader("๐Ÿ“ฅ **Upload a CSV file**", type="csv")
    
    try:
        if uploaded_file is not None:
            with st.spinner('๐Ÿ”„ Loading and processing your data...'):
                # Load the dataset
                data = pd.read_csv(uploaded_file)
                st.session_state['data'] = data
                
                # Initialize the agent with the dataset
                st.session_state['agent'] = DataAnalysisAgent(
                    dataset=data,
                    tools=[analyze_basic_stats, generate_correlation_matrix, 
                           analyze_categorical_columns, suggest_features, predictive_analysis],
                    model=GroqLLM(),
                    additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn", "plotly"]
                )
                
                st.success(f"โœ… Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns")
                st.subheader("๐Ÿ” **Data Preview**")
                st.dataframe(data.head())
        
        if st.session_state['data'] is not None:
            # Sidebar for Analysis Selection
            st.sidebar.header("๐Ÿ› ๏ธ **Select Analysis Type**")
            analysis_type = st.sidebar.selectbox(
                "Choose analysis type",
                ["Basic Statistics", "Correlation Analysis", "Categorical Analysis", 
                 "Feature Engineering", "Predictive Analytics", "Custom Question"]
            )
            
            if analysis_type == "Basic Statistics":
                with st.spinner('๐Ÿ“ˆ Analyzing basic statistics...'):
                    result = st.session_state['agent'].run(
                        "Use the analyze_basic_stats tool to analyze this dataset and "
                        "provide insights about the numerical distributions."
                    )
                    st.markdown(result, unsafe_allow_html=True)
                    st.session_state['report_content'] += result + "\n\n"
            
            elif analysis_type == "Correlation Analysis":
                with st.spinner('๐Ÿ“Š Generating correlation matrix...'):
                    result = st.session_state['agent'].run(
                        "Use the generate_correlation_matrix tool to analyze correlations "
                        "and explain any strong relationships found."
                    )
                    st.components.v1.html(result, height=600)
                    st.session_state['report_content'] += "### Correlation Analysis\n" + result + "\n\n"
            
            elif analysis_type == "Categorical Analysis":
                with st.spinner('๐Ÿ“Š Analyzing categorical columns...'):
                    result = st.session_state['agent'].run(
                        "Use the analyze_categorical_columns tool to examine the "
                        "categorical variables and explain the distributions."
                    )
                    st.markdown(result, unsafe_allow_html=True)
                    st.session_state['report_content'] += result + "\n\n"
            
            elif analysis_type == "Feature Engineering":
                with st.spinner('๐Ÿ”ง Generating feature suggestions...'):
                    result = st.session_state['agent'].run(
                        "Use the suggest_features tool to recommend potential "
                        "feature engineering steps for this dataset."
                    )
                    st.markdown(result, unsafe_allow_html=True)
                    st.session_state['report_content'] += result + "\n\n"
            
            elif analysis_type == "Predictive Analytics":
                with st.form("Predictive Analytics Form"):
                    st.write("๐Ÿ”ฎ **Predictive Analytics**")
                    target = st.selectbox("Select the target variable for prediction:", options=st.session_state['data'].columns)
                    submit = st.form_submit_button("๐Ÿš€ Run Predictive Analysis")
                
                if submit:
                    with st.spinner('๐Ÿš€ Performing predictive analysis...'):
                        result = st.session_state['agent'].run(
                            f"Use the predictive_analysis tool to build a classification model with `{target}` as the target variable."
                        )
                        st.markdown(result, unsafe_allow_html=True)
                        st.session_state['report_content'] += result + "\n\n"
                        export_report(result, "Predictive_Analysis_Report")
            
            elif analysis_type == "Custom Question":
                with st.expander("๐Ÿ“ **Ask a Custom Question**"):
                    question = st.text_input("What would you like to know about your data?")
                    if st.button("๐Ÿ” Get Answer"):
                        if question:
                            with st.spinner('๐Ÿง  Processing your question...'):
                                result = st.session_state['agent'].run(question)
                                st.markdown(result, unsafe_allow_html=True)
                                st.session_state['report_content'] += f"### Custom Question: {question}\n{result}\n\n"
                        else:
                            st.warning("Please enter a question.")
            
            # Option to Export Report
            if st.session_state['report_content']:
                st.sidebar.markdown("---")
                if st.sidebar.button("๐Ÿ“ค **Export Analysis Report**"):
                    export_report(st.session_state['report_content'], "Business_Intelligence_Report")
                    st.sidebar.success("โœ… Report exported successfully!")
    
    except Exception as e:
        st.error(f"โš ๏ธ An error occurred: {str(e)}")

# ------------------------------
# Application Entry Point
# ------------------------------
if __name__ == "__main__":
    main()