File size: 7,092 Bytes
6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 57776e0 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 57776e0 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 57776e0 e207857 57776e0 e207857 57776e0 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 57776e0 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 57776e0 6e8a7d4 57776e0 6e8a7d4 57776e0 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 6e8a7d4 e207857 57776e0 6e8a7d4 e207857 6e8a7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import streamlit as st
import numpy as np
import pandas as pd
from smolagents import CodeAgent, tool
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import base64
import os
from groq import Groq
import io
import tempfile
import pdfkit
# --------------------------------------
# LLM Interface
# --------------------------------------
class GroqLLM:
"""Compatible LLM interface for smolagents CodeAgent."""
def __init__(self, model_name="llama-3.1-8B-Instant"):
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
self.model_name = model_name
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
"""Make the class callable as required by smolagents."""
try:
if isinstance(prompt, (dict, list)):
prompt_str = str(prompt)
else:
prompt_str = str(prompt)
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt_str}],
temperature=0.7,
max_tokens=1024,
stream=False,
)
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
except Exception as e:
return f"Error generating response: {str(e)}"
# --------------------------------------
# Dataset-Aware Agent
# --------------------------------------
class DataAnalysisAgent(CodeAgent):
"""Extended CodeAgent with dataset awareness."""
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
super().__init__(*args, **kwargs)
self._dataset = dataset
@property
def dataset(self) -> pd.DataFrame:
"""Access the stored dataset."""
return self._dataset
def run(self, prompt: str) -> str:
"""Override run method to include dataset context."""
dataset_info = f"""
Dataset Shape: {self.dataset.shape}
Columns: {', '.join(self.dataset.columns)}
Data Types: {self.dataset.dtypes.to_dict()}
"""
enhanced_prompt = f"""
Analyze the following dataset:
{dataset_info}
Task: {prompt}
Use the provided tools to analyze this specific dataset and return detailed results.
"""
return super().run(enhanced_prompt)
# --------------------------------------
# Tools
# --------------------------------------
@tool
def analyze_basic_stats(data: pd.DataFrame) -> str:
"""Calculate basic statistical measures for numerical columns."""
if data is None:
data = tool.agent.dataset
stats = data.describe().to_markdown()
return f"### Basic Statistics\n{stats}"
@tool
def generate_correlation_matrix(data: pd.DataFrame) -> str:
"""Generate a visual correlation matrix for numerical columns."""
if data is None:
data = tool.agent.dataset
numeric_data = data.select_dtypes(include=[np.number])
plt.figure(figsize=(10, 8))
sns.heatmap(numeric_data.corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Matrix")
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close()
return base64.b64encode(buf.getvalue()).decode()
@tool
def analyze_categorical_columns(data: pd.DataFrame) -> str:
"""Analyze categorical columns in the dataset."""
if data is None:
data = tool.agent.dataset
categorical_cols = data.select_dtypes(include=["object", "category"]).columns
analysis = {}
for col in categorical_cols:
analysis[col] = {
"unique_values": data[col].nunique(),
"top_categories": data[col].value_counts().head(5).to_dict(),
"missing": data[col].isnull().sum(),
}
return str(analysis)
@tool
def suggest_features(data: pd.DataFrame) -> str:
"""Suggest potential feature engineering steps."""
if data is None:
data = tool.agent.dataset
suggestions = []
numeric_cols = data.select_dtypes(include=[np.number]).columns
categorical_cols = data.select_dtypes(include=["object", "category"]).columns
if len(numeric_cols) >= 2:
suggestions.append("Consider creating interaction terms between numerical features")
if len(categorical_cols) > 0:
suggestions.append("Consider one-hot encoding for categorical variables")
for col in numeric_cols:
if data[col].skew() > 1 or data[col].skew() < -1:
suggestions.append(f"Consider log transformation for {col} due to skewness")
return "\n".join(suggestions)
# --------------------------------------
# Export Report
# --------------------------------------
def export_report(content: str, filename: str):
"""Export analysis report as a PDF."""
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as tmp:
tmp.write(content.encode("utf-8"))
tmp_path = tmp.name
pdf_path = f"{filename}.pdf"
pdfkit.from_file(tmp_path, pdf_path)
with open(pdf_path, "rb") as pdf_file:
st.download_button(
label="Download Report as PDF",
data=pdf_file.read(),
file_name=pdf_path,
mime="application/pdf",
)
os.remove(tmp_path)
os.remove(pdf_path)
# --------------------------------------
# Streamlit App
# --------------------------------------
def main():
st.title("Data Analysis Assistant")
st.write("Upload your dataset and get automated analysis with natural language interaction.")
if "data" not in st.session_state:
st.session_state["data"] = None
uploaded_file = st.file_uploader("Upload CSV File", type="csv")
if uploaded_file:
st.session_state["data"] = pd.read_csv(uploaded_file)
st.success(f"Loaded dataset with {st.session_state['data'].shape[0]} rows and {st.session_state['data'].shape[1]} columns.")
st.dataframe(st.session_state["data"].head())
agent = DataAnalysisAgent(
dataset=st.session_state["data"],
tools=[analyze_basic_stats, generate_correlation_matrix, analyze_categorical_columns, suggest_features],
model=GroqLLM(),
)
analysis_type = st.selectbox("Choose Analysis Type", ["Basic Statistics", "Correlation Analysis", "Categorical Analysis", "Feature Suggestions"])
if analysis_type == "Basic Statistics":
st.markdown(agent.run("Analyze basic statistics."))
elif analysis_type == "Correlation Analysis":
result = agent.run("Generate a correlation matrix.")
st.image(f"data:image/png;base64,{result}")
elif analysis_type == "Categorical Analysis":
st.markdown(agent.run("Analyze categorical columns."))
elif analysis_type == "Feature Suggestions":
st.markdown(agent.run("Suggest feature engineering ideas."))
if st.button("Export Report"):
export_report(agent.run("Generate full report."), "data_analysis_report")
if __name__ == "__main__":
main()
|