File size: 7,883 Bytes
6e8a7d4
 
e207857
f748c28
 
 
6e8a7d4
 
 
 
28e2398
 
e207857
f748c28
 
 
6e8a7d4
 
e207857
659fba8
 
 
 
 
 
 
 
 
28e2398
 
 
 
 
 
 
 
 
 
 
 
 
6e8a7d4
 
e207857
659fba8
 
 
 
 
 
 
 
6e8a7d4
28e2398
57776e0
28e2398
 
 
57776e0
28e2398
57776e0
 
6e8a7d4
 
e207857
659fba8
 
 
 
 
 
 
 
 
28e2398
6e8a7d4
28e2398
6e8a7d4
 
28e2398
 
 
6e8a7d4
28e2398
57776e0
6e8a7d4
 
e207857
659fba8
 
 
 
 
 
 
 
 
6e8a7d4
 
28e2398
 
6e8a7d4
57776e0
28e2398
6e8a7d4
57776e0
28e2398
6e8a7d4
 
57776e0
28e2398
 
6e8a7d4
 
e207857
57776e0
28e2398
 
 
 
 
 
 
16f65e2
 
28e2398
 
 
 
 
 
 
 
f748c28
 
 
 
 
 
 
 
28e2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f748c28
28e2398
 
 
 
 
 
f748c28
28e2398
 
 
 
 
 
 
 
 
f748c28
28e2398
 
 
 
 
 
f748c28
28e2398
 
 
 
 
 
 
 
 
 
 
 
e207857
6e8a7d4
28e2398
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import streamlit as st
import numpy as np
import pandas as pd
from langchain.tools import tool
from langchain.agents import initialize_agent, AgentType
from langchain.chat_models import ChatOpenAI
from typing import Union, List, Dict, Optional
import matplotlib.pyplot as plt
import seaborn as sns
import os
import base64
import io

# Set up LangChain with OpenAI (or any other LLM)
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"  # Replace with your OpenAI API key
llm = ChatOpenAI(model="gpt-4", temperature=0.7)

@tool
def analyze_basic_stats(data: pd.DataFrame) -> str:
    """Calculate basic statistical measures for numerical columns in the dataset.
    
    Args:
        data (pd.DataFrame): The dataset to analyze. It should contain at least one numerical column.
    
    Returns:
        str: A string containing formatted basic statistics for each numerical column,
            including mean, median, standard deviation, skewness, and missing value counts.
    """
    stats = {}
    numeric_cols = data.select_dtypes(include=[np.number]).columns
    
    for col in numeric_cols:
        stats[col] = {
            'mean': float(data[col].mean()),
            'median': float(data[col].median()),
            'std': float(data[col].std()),
            'skew': float(data[col].skew()),
            'missing': int(data[col].isnull().sum())
        }
    
    return str(stats)

@tool
def generate_correlation_matrix(data: pd.DataFrame) -> str:
    """Generate a visual correlation matrix for numerical columns in the dataset.
    
    Args:
        data (pd.DataFrame): The dataset to analyze. It should contain at least two numerical columns.
    
    Returns:
        str: A base64 encoded string representing the correlation matrix plot image.
    """
    numeric_data = data.select_dtypes(include=[np.number])
    
    plt.figure(figsize=(10, 8))
    sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Matrix')
    
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    plt.close()
    return base64.b64encode(buf.getvalue()).decode()

@tool
def analyze_categorical_columns(data: pd.DataFrame) -> str:
    """Analyze categorical columns in the dataset for distribution and frequencies.
    
    Args:
        data (pd.DataFrame): The dataset to analyze. It should contain at least one categorical column.
    
    Returns:
        str: A string containing formatted analysis results for each categorical column,
            including unique value counts, top categories, and missing value counts.
    """
    categorical_cols = data.select_dtypes(include=['object', 'category']).columns
    analysis = {}
    
    for col in categorical_cols:
        analysis[col] = {
            'unique_values': int(data[col].nunique()),
            'top_categories': data[col].value_counts().head(5).to_dict(),
            'missing': int(data[col].isnull().sum())
        }
    
    return str(analysis)

@tool
def suggest_features(data: pd.DataFrame) -> str:
    """Suggest potential feature engineering steps based on data characteristics.
    
    Args:
        data (pd.DataFrame): The dataset to analyze. It can contain both numerical and categorical columns.
    
    Returns:
        str: A string containing suggestions for feature engineering based on
            the characteristics of the input data.
    """
    suggestions = []
    numeric_cols = data.select_dtypes(include=[np.number]).columns
    categorical_cols = data.select_dtypes(include=['object', 'category']).columns
    
    if len(numeric_cols) >= 2:
        suggestions.append("Consider creating interaction terms between numerical features")
    
    if len(categorical_cols) > 0:
        suggestions.append("Consider one-hot encoding for categorical variables")
        
    for col in numeric_cols:
        if data[col].skew() > 1 or data[col].skew() < -1:
            suggestions.append(f"Consider log transformation for {col} due to skewness")
    
    return '\n'.join(suggestions)

def main():
    st.title("Data Analysis Assistant")
    st.write("Upload your dataset and get automated analysis with natural language interaction.")
    
    # Initialize session state
    if 'data' not in st.session_state:
        st.session_state['data'] = None
    if 'agent' not in st.session_state:
        st.session_state['agent'] = None
    
    # Drag-and-drop file upload
    uploaded_file = st.file_uploader("Drag and drop a CSV file here", type="csv")
    
    try:
        if uploaded_file is not None:
            with st.spinner('Loading and processing your data...'):
                # Load the dataset
                data = pd.read_csv(uploaded_file)
                st.session_state['data'] = data
                
                # Initialize the LangChain agent with the tools
                tools = [analyze_basic_stats, generate_correlation_matrix, 
                         analyze_categorical_columns, suggest_features]
                st.session_state['agent'] = initialize_agent(
                    tools=tools,
                    llm=llm,
                    agent=AgentType.OPENAI_FUNCTIONS,
                    verbose=True
                )
                
                st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
                st.subheader("Data Preview")
                st.dataframe(data.head())
        
        if st.session_state['data'] is not None:
            analysis_type = st.selectbox(
                "Choose analysis type",
                ["Basic Statistics", "Correlation Analysis", "Categorical Analysis", 
                 "Feature Engineering", "Custom Question"]
            )
            
            if analysis_type == "Basic Statistics":
                with st.spinner('Analyzing basic statistics...'):
                    result = st.session_state['agent'].run(
                        f"Analyze the dataset and provide basic statistics: {st.session_state['data']}"
                    )
                    st.write(result)
                    
            elif analysis_type == "Correlation Analysis":
                with st.spinner('Generating correlation matrix...'):
                    result = st.session_state['agent'].run(
                        f"Generate a correlation matrix for the dataset: {st.session_state['data']}"
                    )
                    if isinstance(result, str) and result.startswith('data:image') or ',' in result:
                        st.image(f"data:image/png;base64,{result.split(',')[-1]}")
                    else:
                        st.write(result)
                    
            elif analysis_type == "Categorical Analysis":
                with st.spinner('Analyzing categorical columns...'):
                    result = st.session_state['agent'].run(
                        f"Analyze categorical columns in the dataset: {st.session_state['data']}"
                    )
                    st.write(result)
                    
            elif analysis_type == "Feature Engineering":
                with st.spinner('Generating feature suggestions...'):
                    result = st.session_state['agent'].run(
                        f"Suggest feature engineering steps for the dataset: {st.session_state['data']}"
                    )
                    st.write(result)
                    
            elif analysis_type == "Custom Question":
                question = st.text_input("What would you like to know about your data?")
                if question:
                    with st.spinner('Analyzing...'):
                        result = st.session_state['agent'].run(question)
                        st.write(result)
                        
    except Exception as e:
        st.error(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    main()