File size: 8,079 Bytes
4372b0a
7e2c73b
4372b0a
 
b6ee928
517de74
2b2ae99
5e95a20
 
 
a7d3db7
d26962d
517de74
fbb4b8d
2b2ae99
94febc8
fbb4b8d
2b2ae99
 
 
 
 
 
 
978c4cf
4372b0a
 
a4f7e5c
7e2c73b
 
 
a4f7e5c
7e2c73b
 
 
 
fbb4b8d
7e2c73b
5e95a20
7e2c73b
 
 
fbb4b8d
7e2c73b
a4f7e5c
7e2c73b
 
 
b6ee928
 
4372b0a
 
 
 
 
b6ee928
a4f7e5c
b6ee928
3987ef0
a4f7e5c
fbb4b8d
2b2ae99
 
 
fbb4b8d
 
2b2ae99
 
 
 
 
 
fbb4b8d
7e2c73b
978c4cf
4372b0a
 
5e95a20
 
4372b0a
0f74db4
5e95a20
42d374e
fbb4b8d
a7d3db7
42d374e
2b2ae99
a4f7e5c
 
5e95a20
a4f7e5c
7e2c73b
 
 
 
 
 
 
2b2ae99
a4f7e5c
4372b0a
5e95a20
4372b0a
fbb4b8d
2b2ae99
 
fbb4b8d
2b2ae99
 
 
fbb4b8d
 
d55cbab
 
2b2ae99
d55cbab
 
 
 
 
 
 
 
 
 
2b2ae99
d55cbab
2b2ae99
d55cbab
 
 
 
2b2ae99
d55cbab
 
 
2b2ae99
d55cbab
 
 
2b2ae99
d55cbab
 
2b2ae99
d55cbab
 
 
 
 
 
 
 
 
2b2ae99
d55cbab
 
 
 
 
 
 
2b2ae99
d55cbab
 
 
 
 
 
 
 
2b2ae99
d55cbab
 
 
 
 
 
 
 
2b2ae99
d55cbab
 
 
 
2b2ae99
5e95a20
2b2ae99
 
 
fbb4b8d
2b2ae99
 
 
 
 
a7d3db7
2b2ae99
 
 
 
 
 
 
d26962d
 
978c4cf
5e95a20
40a1d7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3
# MedGenesis AI Β· CPU-only Streamlit app (OpenAI / Gemini)

import os, pathlib
import asyncio, re
from pathlib import Path

import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph

from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.workspace import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
from mcp.alerts import check_alerts

# ── Streamlit telemetry dir fix ───────────────────────────────────────
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"] = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)

ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"

def _latin1_safe(txt: str) -> str:
    return txt.encode("latin-1", "replace").decode("latin-1")

def _pdf(papers):
    pdf = FPDF()
    pdf.set_auto_page_break(auto=True, margin=15)
    pdf.add_page()
    pdf.set_font("Helvetica", size=11)
    pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
    pdf.ln(3)
    for i, p in enumerate(papers, 1):
        pdf.set_font("Helvetica", "B", 11)
        pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
        pdf.set_font("Helvetica", "", 9)
        body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
        pdf.multi_cell(0, 6, _latin1_safe(body))
        pdf.ln(1)
    return pdf.output(dest="S").encode("latin-1", "replace")

def _workspace_sidebar():
    with st.sidebar:
        st.header("πŸ—‚οΈ Workspace")
        ws = get_workspace()
        if not ws:
            st.info("Run a search then press **Save** to populate this list.")
            return
        for i, item in enumerate(ws, 1):
            with st.expander(f"{i}. {item['query']}"):
                st.write(item["result"]["ai_summary"])

def render_ui():
    st.set_page_config("MedGenesis AI", layout="wide")

    # Initialize session state keys if missing
    if "query_result" not in st.session_state:
        st.session_state.query_result = None
    if "followup_input" not in st.session_state:
        st.session_state.followup_input = ""
    if "followup_response" not in st.session_state:
        st.session_state.followup_response = None
    if "last_query" not in st.session_state:
        st.session_state.last_query = ""
    if "last_llm" not in st.session_state:
        st.session_state.last_llm = ""

    _workspace_sidebar()

    c1, c2 = st.columns([0.15, 0.85])
    with c1:
        if LOGO.exists():
            st.image(str(LOGO), width=105)
    with c2:
        st.markdown("## 🧬 **MedGenesis AI**")
        st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")

    llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
    query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy")

    # Alerts
    if get_workspace():
        try:
            news = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
            if news:
                with st.sidebar:
                    st.subheader("πŸ”” New papers")
                    for q, lnks in news.items():
                        st.write(f"**{q}** – {len(lnks)} new")
        except Exception:
            pass

    # Run search button
    if st.button("Run Search πŸš€") and query:
        with st.spinner("Collecting literature & biomedical data …"):
            res = asyncio.run(orchestrate_search(query, llm=llm))
        st.success(f"Completed with **{res['llm_used'].title()}**")
        st.session_state.query_result = res
        st.session_state.last_query = query
        st.session_state.last_llm = llm
        st.session_state.followup_input = ""
        st.session_state.followup_response = None

    res = st.session_state.query_result

    if res:
        tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])

        with tabs[0]:
            for i, p in enumerate(res["papers"], 1):
                st.markdown(f"**{i}. [{p['title']}]({p['link']})**  *{p['authors']}*")
                st.write(p["summary"])
            col1, col2 = st.columns(2)
            with col1:
                st.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False),
                                   "papers.csv", "text/csv")
            with col2:
                st.download_button("PDF", _pdf(res["papers"]), "papers.pdf", "application/pdf")
            if st.button("πŸ’Ύ Save"):
                save_query(st.session_state.last_query, res)
                st.success("Saved to workspace")

            st.subheader("UMLS concepts")
            for c in res["umls"]:
                if c.get("cui"):
                    st.write(f"- **{c['name']}** ({c['cui']})")

            st.subheader("OpenFDA safety")
            for d in res["drug_safety"]:
                st.json(d)

            st.subheader("AI summary")
            st.info(res["ai_summary"])

        with tabs[1]:
            st.header("Gene / Variant signals")
            for g in res["genes"]:
                st.write(f"- **{g.get('name', g.get('geneid'))}** {g.get('description','')}")
            if res["gene_disease"]:
                st.markdown("### DisGeNET links")
                st.json(res["gene_disease"][:15])
            if res["mesh_defs"]:
                st.markdown("### MeSH definitions")
                for d in res["mesh_defs"]:
                    if d:
                        st.write("-", d)

        with tabs[2]:
            st.header("Clinical trials")
            if not res["clinical_trials"]:
                st.info("No trials (rate-limited or none found).")
            for t in res["clinical_trials"]:
                st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
                st.write(f"Phase {t.get('Phase',[''])[0]} | Status {t['OverallStatus'][0]}")

        with tabs[3]:
            nodes, edges, cfg = build_agraph(res["papers"], res["umls"], res["drug_safety"])
            hl = st.text_input("Highlight node:", key="hl")
            if hl:
                pat = re.compile(re.escape(hl), re.I)
                for n in nodes:
                    n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
            agraph(nodes, edges, cfg)

        with tabs[4]:
            nodes, edges, _ = build_agraph(res["papers"], res["umls"], res["drug_safety"])
            G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
            st.metric("Density", f"{get_density(G):.3f}")
            st.markdown("**Top hubs**")
            for nid, sc in get_top_hubs(G):
                lab = next((n.label for n in nodes if n.id == nid), nid)
                st.write(f"- {lab}  {sc:.3f}")

        with tabs[5]:
            years = [p["published"] for p in res["papers"] if p.get("published")]
            if years:
                st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))

        # Follow-up Q&A block with callback
        st.markdown("---")
        st.text_input("Ask follow‑up question:", key="followup_input")
        def handle_followup():
            follow = st.session_state.followup_input
            if follow.strip():
                ans = asyncio.run(answer_ai_question(
                    follow,
                    context=st.session_state.last_query,
                    llm=st.session_state.last_llm))
                st.session_state.followup_response = ans["answer"]
            else:
                st.session_state.followup_response = None

        st.button("Ask AI", on_click=handle_followup)

        if st.session_state.followup_response:
            st.write(st.session_state.followup_response)

    else:
        st.info("Enter a question and press **Run Search πŸš€**")

if __name__ == "__main__":
    render_ui()