File size: 10,141 Bytes
4372b0a 590f907 4372b0a 590f907 517de74 2b2ae99 5e95a20 a7d3db7 d26962d 517de74 590f907 94febc8 590f907 2b2ae99 590f907 2b2ae99 978c4cf 4372b0a a4f7e5c 590f907 7e2c73b 590f907 7e2c73b fbb4b8d 7e2c73b 5e95a20 7e2c73b fbb4b8d 7e2c73b a4f7e5c 7e2c73b 590f907 b6ee928 4372b0a 590f907 4372b0a b6ee928 a4f7e5c b6ee928 590f907 a4f7e5c fbb4b8d 590f907 fbb4b8d 7e2c73b 978c4cf 590f907 4372b0a 5e95a20 4372b0a 0f74db4 5e95a20 42d374e 590f907 42d374e 590f907 a4f7e5c 590f907 a4f7e5c 7e2c73b 590f907 4372b0a 5e95a20 4372b0a 590f907 2b2ae99 590f907 d26962d 590f907 978c4cf 590f907 5e95a20 40a1d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
#!/usr/bin/env python3
# MedGenesis AI Β· CPU-only Streamlit front-end (OpenAI / Gemini)
from __future__ import annotations
import os, pathlib, asyncio, re
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph
from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.workspace import get_workspace, save_query, clear_workspace
from mcp.knowledge_graph import build_agraph
from mcp.graph_utils import build_nx, get_top_hubs, get_density
from mcp.alerts import check_alerts
# ββ Streamlit telemetry dir fix ββββββββββββββββββββββββββββββββββββββ
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"] = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"
# -------------------------------------------------------------------#
# Utility helpers #
# -------------------------------------------------------------------#
def _latin1_safe(txt: str) -> str:
return txt.encode("latin-1", "replace").decode("latin-1")
def _pdf(papers: list[dict]) -> bytes:
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Helvetica", size=11)
pdf.cell(200, 8, _latin1_safe("MedGenesis AI β Results"), ln=True, align="C")
pdf.ln(3)
for i, p in enumerate(papers, 1):
pdf.set_font("Helvetica", "B", 11)
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
pdf.set_font("Helvetica", "", 9)
body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
pdf.multi_cell(0, 6, _latin1_safe(body))
pdf.ln(1)
return pdf.output(dest="S").encode("latin-1", "replace")
def _workspace_sidebar() -> None:
with st.sidebar:
st.header("ποΈ Workspace")
ws = get_workspace()
if not ws:
st.info("Run a search then press **Save** to populate this list.")
return
if st.button("Clear workspace ποΈ"):
clear_workspace()
st.experimental_rerun()
for i, item in enumerate(ws, 1):
with st.expander(f"{i}. {item['query']}"):
st.write(item["result"]["ai_summary"])
# -------------------------------------------------------------------#
# Streamlit main UI #
# -------------------------------------------------------------------#
def render_ui() -> None:
st.set_page_config("MedGenesis AI", layout="wide")
# ββ session_state bootstrap ββββββββββββββββββββββββββββββββββββ
for key, default in {
"query_result" : None,
"followup_input" : "",
"followup_response" : None,
"last_query" : "",
"last_llm" : "",
}.items():
st.session_state.setdefault(key, default)
_workspace_sidebar()
# ββ header βββββββββββββββββββββββββββββββββββββββββββββββββββββ
c1, c2 = st.columns([0.15, 0.85])
with c1:
if LOGO.exists():
st.image(str(LOGO), width=105)
with c2:
st.markdown("## 𧬠**MedGenesis AI**")
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
query = st.text_input("Enter biomedical question",
placeholder="e.g. CRISPR glioblastoma therapy")
# ββ alerts for saved queries βββββββββββββββββββββββββββββββββββ
if ws := get_workspace():
try:
news = asyncio.run(check_alerts([w["query"] for w in ws]))
if news:
with st.sidebar:
st.subheader("π New papers")
for q, lnks in news.items():
st.write(f"**{q}** β {len(lnks)} new")
except Exception:
pass
# ββ primary search trigger βββββββββββββββββββββββββββββββββββββ
if st.button("Run Search π") and query.strip():
with st.spinner("Collecting literature & biomedical data β¦"):
res = asyncio.run(orchestrate_search(query, llm=llm))
st.success(f"Completed with **{res['llm_used'].title()}**")
st.session_state.update({
"query_result" : res,
"last_query" : query,
"last_llm" : llm,
"followup_input" : "",
"followup_response" : None,
})
res = st.session_state.query_result
if not res:
st.info("Enter a question and press **Run Search π**")
return
# ----------------------------------------------------------------#
# Tabs #
# ----------------------------------------------------------------#
tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])
# Results ---------------------------------------------------------
with tabs[0]:
for i, p in enumerate(res["papers"], 1):
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
st.write(p["summary"])
c1, c2 = st.columns(2)
with c1:
st.download_button("CSV",
pd.DataFrame(res["papers"]).to_csv(index=False),
"papers.csv", "text/csv")
with c2:
st.download_button("PDF", _pdf(res["papers"]),
"papers.pdf", "application/pdf")
if st.button("πΎ Save this result"):
save_query(st.session_state.last_query, res)
st.success("Saved to workspace")
st.subheader("UMLS concepts")
for c in res["umls"]:
if c.get("cui"):
st.write(f"- **{c['name']}** ({c['cui']})")
st.subheader("OpenFDA safety")
for d in res["drug_safety"]:
st.json(d)
st.subheader("AI summary")
st.info(res["ai_summary"])
# Genes -----------------------------------------------------------
with tabs[1]:
st.header("Gene / Variant signals")
if not res["genes"]:
st.info("No gene hits (rate-limited or none found).")
for g in res["genes"]:
st.write(f"- **{g.get('symbol', g.get('name', ''))}** "
f"{g.get('summary', '')[:120]}β¦")
if res["gene_disease"]:
st.markdown("### DisGeNET links")
st.json(res["gene_disease"][:15])
if res["mesh_defs"]:
st.markdown("### MeSH definitions")
for d in res["mesh_defs"]:
if d:
st.write("-", d)
# Trials ----------------------------------------------------------
with tabs[2]:
st.header("Clinical trials")
trials = res["clinical_trials"]
if not trials:
st.info("No trials (rate-limited or none found).")
for t in trials:
st.markdown(f"**{t['nctId']}** β {t['briefTitle']}")
st.write(f"Phase {t.get('phase','')} | Status {t.get('status')}")
# Graph -----------------------------------------------------------
with tabs[3]:
nodes, edges, cfg = build_agraph(
res["papers"], res["umls"], res["drug_safety"],
res["genes"], res["clinical_trials"], res.get("ot_associations", [])
)
hl = st.text_input("Highlight node:")
if hl:
pat = re.compile(re.escape(hl), re.I)
for n in nodes:
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
agraph(nodes, edges, cfg)
# Metrics ---------------------------------------------------------
with tabs[4]:
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
st.metric("Density", f"{get_density(G):.3f}")
st.markdown("**Top hubs**")
for nid, sc in get_top_hubs(G):
lab = next((n.label for n in nodes if n.id == nid), nid)
st.write(f"- {lab} {sc:.3f}")
# Visuals ---------------------------------------------------------
with tabs[5]:
years = [p["published"] for p in res["papers"] if p.get("published")]
if years:
st.plotly_chart(px.histogram(years, nbins=12,
title="Publication Year"))
# ----------------------------------------------------------------#
# Follow-up Q & A #
# ----------------------------------------------------------------#
st.markdown("---")
st.text_input("Ask follow-up question:",
key="followup_input",
placeholder="e.g. Any phase III trials recruiting now?")
def _on_ask() -> None:
q = st.session_state.followup_input.strip()
if not q:
st.warning("Please type a question first.")
return
with st.spinner("Querying LLM β¦"):
ans = asyncio.run(
answer_ai_question(q,
context=st.session_state.last_query,
llm=st.session_state.last_llm))
st.session_state.followup_response = ans["answer"]
st.button("Ask AI", on_click=_on_ask)
if st.session_state.followup_response:
st.write(st.session_state.followup_response)
# -------------------------------------------------------------------#
if __name__ == "__main__":
render_ui()
|