File size: 10,141 Bytes
4372b0a
590f907
4372b0a
590f907
 
517de74
2b2ae99
5e95a20
 
 
a7d3db7
d26962d
517de74
590f907
 
94febc8
590f907
 
2b2ae99
590f907
 
 
2b2ae99
 
978c4cf
4372b0a
 
a4f7e5c
590f907
 
 
7e2c73b
 
 
590f907
 
7e2c73b
 
 
 
fbb4b8d
7e2c73b
5e95a20
7e2c73b
 
 
fbb4b8d
7e2c73b
a4f7e5c
7e2c73b
 
590f907
 
b6ee928
 
4372b0a
 
 
 
590f907
 
 
4372b0a
b6ee928
a4f7e5c
b6ee928
590f907
 
 
 
 
a4f7e5c
fbb4b8d
590f907
 
 
 
 
 
 
 
 
fbb4b8d
7e2c73b
978c4cf
590f907
4372b0a
 
5e95a20
 
4372b0a
0f74db4
5e95a20
42d374e
590f907
 
 
42d374e
590f907
 
a4f7e5c
590f907
a4f7e5c
7e2c73b
 
 
 
 
 
 
590f907
 
4372b0a
5e95a20
4372b0a
590f907
 
 
 
 
 
 
2b2ae99
 
590f907
d26962d
590f907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978c4cf
590f907
5e95a20
40a1d7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python3
# MedGenesis AI Β· CPU-only Streamlit front-end (OpenAI / Gemini)

from __future__ import annotations
import os, pathlib, asyncio, re
from pathlib import Path

import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph

from mcp.orchestrator    import orchestrate_search, answer_ai_question
from mcp.workspace       import get_workspace, save_query, clear_workspace
from mcp.knowledge_graph import build_agraph
from mcp.graph_utils     import build_nx, get_top_hubs, get_density
from mcp.alerts          import check_alerts

# ── Streamlit telemetry dir fix ──────────────────────────────────────
os.environ["STREAMLIT_DATA_DIR"]               = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"]                  = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)

ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"

# -------------------------------------------------------------------#
# Utility helpers                                                    #
# -------------------------------------------------------------------#
def _latin1_safe(txt: str) -> str:
    return txt.encode("latin-1", "replace").decode("latin-1")


def _pdf(papers: list[dict]) -> bytes:
    pdf = FPDF()
    pdf.set_auto_page_break(auto=True, margin=15)
    pdf.add_page()
    pdf.set_font("Helvetica", size=11)
    pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
    pdf.ln(3)
    for i, p in enumerate(papers, 1):
        pdf.set_font("Helvetica", "B", 11)
        pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
        pdf.set_font("Helvetica", "", 9)
        body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
        pdf.multi_cell(0, 6, _latin1_safe(body))
        pdf.ln(1)
    return pdf.output(dest="S").encode("latin-1", "replace")


def _workspace_sidebar() -> None:
    with st.sidebar:
        st.header("πŸ—‚οΈ Workspace")
        ws = get_workspace()
        if not ws:
            st.info("Run a search then press **Save** to populate this list.")
            return
        if st.button("Clear workspace πŸ—‘οΈ"):
            clear_workspace()
            st.experimental_rerun()
        for i, item in enumerate(ws, 1):
            with st.expander(f"{i}. {item['query']}"):
                st.write(item["result"]["ai_summary"])


# -------------------------------------------------------------------#
# Streamlit main UI                                                  #
# -------------------------------------------------------------------#
def render_ui() -> None:
    st.set_page_config("MedGenesis AI", layout="wide")

    # ── session_state bootstrap ────────────────────────────────────
    for key, default in {
        "query_result"      : None,
        "followup_input"    : "",
        "followup_response" : None,
        "last_query"        : "",
        "last_llm"          : "",
    }.items():
        st.session_state.setdefault(key, default)

    _workspace_sidebar()

    # ── header ─────────────────────────────────────────────────────
    c1, c2 = st.columns([0.15, 0.85])
    with c1:
        if LOGO.exists():
            st.image(str(LOGO), width=105)
    with c2:
        st.markdown("## 🧬 **MedGenesis AI**")
        st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")

    llm   = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
    query = st.text_input("Enter biomedical question",
                          placeholder="e.g. CRISPR glioblastoma therapy")

    # ── alerts for saved queries ───────────────────────────────────
    if ws := get_workspace():
        try:
            news = asyncio.run(check_alerts([w["query"] for w in ws]))
            if news:
                with st.sidebar:
                    st.subheader("πŸ”” New papers")
                    for q, lnks in news.items():
                        st.write(f"**{q}** – {len(lnks)} new")
        except Exception:
            pass

    # ── primary search trigger ─────────────────────────────────────
    if st.button("Run Search πŸš€") and query.strip():
        with st.spinner("Collecting literature & biomedical data …"):
            res = asyncio.run(orchestrate_search(query, llm=llm))
        st.success(f"Completed with **{res['llm_used'].title()}**")
        st.session_state.update({
            "query_result"      : res,
            "last_query"        : query,
            "last_llm"          : llm,
            "followup_input"    : "",
            "followup_response" : None,
        })

    res = st.session_state.query_result
    if not res:
        st.info("Enter a question and press **Run Search πŸš€**")
        return

    # ----------------------------------------------------------------#
    # Tabs                                                            #
    # ----------------------------------------------------------------#
    tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])

    # Results ---------------------------------------------------------
    with tabs[0]:
        for i, p in enumerate(res["papers"], 1):
            st.markdown(f"**{i}. [{p['title']}]({p['link']})**  *{p['authors']}*")
            st.write(p["summary"])

        c1, c2 = st.columns(2)
        with c1:
            st.download_button("CSV",
                               pd.DataFrame(res["papers"]).to_csv(index=False),
                               "papers.csv", "text/csv")
        with c2:
            st.download_button("PDF", _pdf(res["papers"]),
                               "papers.pdf", "application/pdf")

        if st.button("πŸ’Ύ Save this result"):
            save_query(st.session_state.last_query, res)
            st.success("Saved to workspace")

        st.subheader("UMLS concepts")
        for c in res["umls"]:
            if c.get("cui"):
                st.write(f"- **{c['name']}** ({c['cui']})")

        st.subheader("OpenFDA safety")
        for d in res["drug_safety"]:
            st.json(d)

        st.subheader("AI summary")
        st.info(res["ai_summary"])

    # Genes -----------------------------------------------------------
    with tabs[1]:
        st.header("Gene / Variant signals")
        if not res["genes"]:
            st.info("No gene hits (rate-limited or none found).")
        for g in res["genes"]:
            st.write(f"- **{g.get('symbol', g.get('name', ''))}**  "
                     f"{g.get('summary', '')[:120]}…")

        if res["gene_disease"]:
            st.markdown("### DisGeNET links")
            st.json(res["gene_disease"][:15])

        if res["mesh_defs"]:
            st.markdown("### MeSH definitions")
            for d in res["mesh_defs"]:
                if d:
                    st.write("-", d)

    # Trials ----------------------------------------------------------
    with tabs[2]:
        st.header("Clinical trials")
        trials = res["clinical_trials"]
        if not trials:
            st.info("No trials (rate-limited or none found).")
        for t in trials:
            st.markdown(f"**{t['nctId']}** – {t['briefTitle']}")
            st.write(f"Phase {t.get('phase','')} | Status {t.get('status')}")

    # Graph -----------------------------------------------------------
    with tabs[3]:
        nodes, edges, cfg = build_agraph(
            res["papers"], res["umls"], res["drug_safety"],
            res["genes"], res["clinical_trials"], res.get("ot_associations", [])
        )
        hl = st.text_input("Highlight node:")
        if hl:
            pat = re.compile(re.escape(hl), re.I)
            for n in nodes:
                n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
        agraph(nodes, edges, cfg)

    # Metrics ---------------------------------------------------------
    with tabs[4]:
        G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
        st.metric("Density", f"{get_density(G):.3f}")
        st.markdown("**Top hubs**")
        for nid, sc in get_top_hubs(G):
            lab = next((n.label for n in nodes if n.id == nid), nid)
            st.write(f"- {lab}  {sc:.3f}")

    # Visuals ---------------------------------------------------------
    with tabs[5]:
        years = [p["published"] for p in res["papers"] if p.get("published")]
        if years:
            st.plotly_chart(px.histogram(years, nbins=12,
                                         title="Publication Year"))

    # ----------------------------------------------------------------#
    # Follow-up Q & A                                                 #
    # ----------------------------------------------------------------#
    st.markdown("---")
    st.text_input("Ask follow-up question:",
                  key="followup_input",
                  placeholder="e.g. Any phase III trials recruiting now?")

    def _on_ask() -> None:
        q = st.session_state.followup_input.strip()
        if not q:
            st.warning("Please type a question first.")
            return
        with st.spinner("Querying LLM …"):
            ans = asyncio.run(
                answer_ai_question(q,
                                   context=st.session_state.last_query,
                                   llm=st.session_state.last_llm))
        st.session_state.followup_response = ans["answer"]

    st.button("Ask AI", on_click=_on_ask)
    if st.session_state.followup_response:
        st.write(st.session_state.followup_response)


# -------------------------------------------------------------------#
if __name__ == "__main__":
    render_ui()