File size: 6,694 Bytes
994feb6
 
590f907
517de74
994feb6
5e95a20
 
 
a7d3db7
d26962d
517de74
590f907
36986a7
94febc8
994feb6
590f907
2b2ae99
994feb6
 
 
 
 
 
2b2ae99
978c4cf
4372b0a
 
a4f7e5c
994feb6
7e2c73b
994feb6
 
 
 
7e2c73b
994feb6
7e2c73b
 
994feb6
7e2c73b
5e95a20
7e2c73b
994feb6
 
fbb4b8d
994feb6
 
7e2c73b
 
994feb6
 
 
b6ee928
 
4372b0a
 
 
 
 
b6ee928
a4f7e5c
b6ee928
994feb6
 
36986a7
a4f7e5c
994feb6
fbb4b8d
994feb6
4372b0a
994feb6
 
 
 
 
42d374e
590f907
994feb6
 
 
4372b0a
5e95a20
4372b0a
994feb6
 
 
36986a7
994feb6
590f907
d26962d
590f907
 
994feb6
590f907
994feb6
590f907
 
 
 
 
994feb6
 
 
 
36986a7
994feb6
590f907
 
 
 
994feb6
590f907
994feb6
 
 
 
 
 
 
 
 
 
590f907
 
36986a7
994feb6
36986a7
994feb6
 
590f907
994feb6
590f907
994feb6
 
590f907
 
 
 
 
 
994feb6
590f907
994feb6
590f907
 
 
 
 
994feb6
590f907
994feb6
590f907
994feb6
 
590f907
994feb6
590f907
994feb6
 
590f907
994feb6
 
 
 
5e95a20
994feb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# ──────────────────────────── app.py ─────────────────────────────────
"""Streamlit UI – MedGenesis v2 with gene + variant + trial integration."""
import os, pathlib, asyncio, re
from pathlib import Path

import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph

from mcp.orchestrator    import orchestrate_search, answer_ai_question
from mcp.workspace       import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_utils      import build_nx, get_top_hubs, get_density
from mcp.alerts          import check_alerts

# ---- Streamlit telemetry patch -------------------------------------
os.environ.update({
    "STREAMLIT_DATA_DIR": "/tmp/.streamlit",
    "XDG_STATE_HOME":     "/tmp",
    "STREAMLIT_BROWSER_GATHERUSAGESTATS": "false",
})
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)

ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"

# ---------------- helpers -------------------------------------------

def _latin1_safe(t: str) -> str:
    return t.encode("latin-1", "replace").decode("latin-1")

def _export_pdf(papers):
    pdf = FPDF()
    pdf.set_auto_page_break(auto=True, margin=15)
    pdf.add_page()
    pdf.set_font("Helvetica", size=11)
    pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
    pdf.ln(3)
    for i, p in enumerate(papers, 1):
        pdf.set_font("Helvetica", "B", 11)
        pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
        pdf.set_font("Helvetica", size=9)
        body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
        pdf.multi_cell(0, 6, _latin1_safe(body))
        pdf.ln(1)
    return pdf.output(dest="S").encode("latin-1", "replace")

# ---------------- sidebar -------------------------------------------

def _workspace_sidebar():
    with st.sidebar:
        st.header("πŸ—‚οΈ Workspace")
        ws = get_workspace()
        if not ws:
            st.info("Run a search then press **Save** to populate this list.")
            return
        for i, item in enumerate(ws, 1):
            with st.expander(f"{i}. {item['query']}"):
                st.write(item["result"]["ai_summary"])

# ---------------- main ----------------------------------------------

def render_ui():
    st.set_page_config("MedGenesis AI", layout="wide")
    _workspace_sidebar()

    # header ---------------------------------------------------------
    c1, c2 = st.columns([0.15, 0.85])
    if LOGO.exists():
        with c1: st.image(str(LOGO), width=105)
    with c2:
        st.markdown("## 🧬 **MedGenesis AI**")
        st.caption("Multi‑source biomedical assistant Β· OpenAI / Gemini")

    llm   = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
    query = st.text_input("Enter biomedical question", "CRISPR glioblastoma therapy")

    if st.button("Run Search πŸš€") and query:
        with st.spinner("Collecting literature & biomedical data …"):
            res = asyncio.run(orchestrate_search(query, llm=llm))
        st.success(f"Completed with **{res['llm_used'].title()}**")
        st.session_state.result = res
        st.session_state.last_query = query
        st.session_state.last_llm   = llm

    res = st.session_state.get("result")
    if not res:
        st.info("Enter a question and press **Run Search πŸš€**")
        return

    tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])

    # results --------------------------------------------------------
    with tabs[0]:
        for i, p in enumerate(res["papers"], 1):
            st.markdown(f"**{i}. [{p['title']}]({p['link']})**  *{p['authors']}*")
            st.write(p["summary"])
        c1, c2 = st.columns(2)
        with c1:
            st.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False), "papers.csv")
        with c2:
            st.download_button("PDF", _export_pdf(res["papers"]), "papers.pdf", mime="application/pdf")
        if st.button("πŸ’Ύ Save"):
            save_query(query, res)
            st.success("Saved to workspace")
        st.subheader("AI summary")
        st.info(res["ai_summary"])

    # gene tab -------------------------------------------------------
    with tabs[1]:
        if not res["genes"]:
            st.info("No gene hits (rate‑limited or none found).")
        for g in res["genes"]:
            st.json(g)
        if res["variants"]:
            st.markdown("### Tumour variants (cBioPortal)")
            for k, v in res["variants"].items():
                st.write(f"**{k}** – {len(v)} variants")

    # trials tab -----------------------------------------------------
    with tabs[2]:
        st.header("Clinical trials")
        if not res["clinical_trials"]:
            st.info("No trials (rate‑limited or none found).")
        for t in res["clinical_trials"]:
            st.markdown(f"**{t['nctId']}** – {t['briefTitle']}")
            st.write(f"Phase {t.get('phase')} | Status {t.get('status')}")

    # graph tab ------------------------------------------------------
    with tabs[3]:
        nodes, edges, cfg = build_agraph(res["papers"], res["umls"], res["drug_safety"])
        hl = st.text_input("Highlight node:")
        if hl:
            pat = re.compile(re.escape(hl), re.I)
            for n in nodes:
                n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
        agraph(nodes, edges, cfg)

    # metrics tab ----------------------------------------------------
    with tabs[4]:
        G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
        st.metric("Density", f"{get_density(G):.3f}")
        for nid, sc in get_top_hubs(G):
            lab = next((n.label for n in nodes if n.id == nid), nid)
            st.write(f"- {lab}  {sc:.3f}")

    # visuals --------------------------------------------------------
    with tabs[5]:
        years = [p.get("published", "")[:4] for p in res["papers"] if p.get("published")]
        if years:
            fig = px.histogram(years, nbins=12, title="Publication Year")
            st.plotly_chart(fig)

    # follow‑up QA ---------------------------------------------------
    st.markdown("---")
    q = st.text_input("Ask follow‑up question:")
    if st.button("Ask AI"):
        with st.spinner("Querying LLM …"):
            ans = asyncio.run(answer_ai_question(q, context=st.session_state.last_query, llm=st.session_state.last_llm))
        st.write(ans["answer"])


if __name__ == "__main__":
    render_ui()