File size: 8,900 Bytes
8ab7297
 
f9a0bdb
517de74
994feb6
5e95a20
 
 
f9a0bdb
39219c6
517de74
8ab7297
 
94febc8
8ab7297
 
2b2ae99
8ab7297
 
 
 
f9a0bdb
978c4cf
4372b0a
 
a4f7e5c
39219c6
f9a0bdb
7e2c73b
8ab7297
7e2c73b
994feb6
7e2c73b
 
8ab7297
7e2c73b
5e95a20
7e2c73b
8ab7297
f9a0bdb
8ab7297
39219c6
994feb6
7e2c73b
 
8ab7297
b6ee928
8ab7297
4372b0a
 
 
 
 
b6ee928
8ab7297
39219c6
8ab7297
a4f7e5c
fe00e4d
8ab7297
 
 
 
 
 
 
fe00e4d
994feb6
8ab7297
 
fe00e4d
8ab7297
 
994feb6
76418d6
f9a0bdb
8ab7297
 
f9a0bdb
8ab7297
 
 
39219c6
8ab7297
39219c6
 
 
 
 
 
8ab7297
39219c6
8ab7297
f9a0bdb
 
8ab7297
 
 
 
 
 
76418d6
39219c6
76418d6
8ab7297
76418d6
 
8ab7297
 
76418d6
8ab7297
 
 
 
 
 
 
 
 
76418d6
 
 
 
8ab7297
76418d6
8ab7297
76418d6
8ab7297
76418d6
8ab7297
76418d6
8ab7297
76418d6
 
8ab7297
 
39219c6
8ab7297
 
 
 
 
 
76418d6
8ab7297
 
76418d6
8ab7297
 
 
76418d6
8ab7297
76418d6
 
8ab7297
 
76418d6
8ab7297
 
 
 
 
 
 
 
 
 
76418d6
8ab7297
 
 
 
 
 
 
 
 
 
 
76418d6
 
 
 
 
 
 
8ab7297
 
 
 
76418d6
 
8ab7297
 
 
76418d6
8ab7297
 
 
76418d6
8ab7297
76418d6
8ab7297
76418d6
8ab7297
 
 
 
 
 
 
 
 
 
 
 
76418d6
 
f9a0bdb
5e95a20
fe00e4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# app.py - MedGenesis AI Streamlit app (OpenAI/Gemini)

import os, pathlib, asyncio, re
from pathlib import Path

import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph

from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.workspace import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
from mcp.alerts import check_alerts

# --- Fix Streamlit temp dir ---
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"] = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)

ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"

def _latin1_safe(txt: str) -> str:
    return txt.encode("latin-1", "replace").decode("latin-1")

def _pdf(papers):
    pdf = FPDF()
    pdf.set_auto_page_break(auto=True, margin=15)
    pdf.add_page()
    pdf.set_font("Helvetica", size=11)
    pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
    pdf.ln(3)
    for i, p in enumerate(papers, 1):
        pdf.set_font("Helvetica", "B", 11)
        pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title', '')}"))
        pdf.set_font("Helvetica", "", 9)
        body = f"{p.get('authors','')}\n{p.get('summary','')}\n{p.get('link','')}\n"
        pdf.multi_cell(0, 6, _latin1_safe(body))
        pdf.ln(1)
    return pdf.output(dest="S").encode("latin-1", "replace")

def _workspace_sidebar():
    with st.sidebar:
        st.header("πŸ—‚οΈ Workspace")
        ws = get_workspace()
        if not ws:
            st.info("Run a search then press **Save** to populate this list.")
            return
        for i, item in enumerate(ws, 1):
            with st.expander(f"{i}. {item['query']}"):
                st.write(item["result"].get("ai_summary", ""))

def render_ui():
    st.set_page_config("MedGenesis AI", layout="wide")

    # Session state
    for k, v in [
        ("query_result", None), ("followup_input", ""),
        ("followup_response", None), ("last_query", ""), ("last_llm", "")
    ]:
        if k not in st.session_state:
            st.session_state[k] = v

    _workspace_sidebar()
    c1, c2 = st.columns([0.15, 0.85])
    with c1:
        if LOGO.exists():
            st.image(str(LOGO), width=105)
    with c2:
        st.markdown("## 🧬 **MedGenesis AI**")
        st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")

    llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
    query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy")

    # Alerts
    wsq = get_workspace()
    if wsq:
        try:
            news = asyncio.run(check_alerts([w["query"] for w in wsq]))
            if news:
                with st.sidebar:
                    st.subheader("πŸ”” New papers")
                    for q, lnks in news.items():
                        st.write(f"**{q}** – {len(lnks)} new")
        except Exception:
            pass

    if st.button("Run Search πŸš€") and query:
        with st.spinner("Collecting literature & biomedical data …"):
            res = asyncio.run(orchestrate_search(query, llm=llm))
        st.success(f"Completed with **{res.get('llm_used','LLM').title()}**")
        st.session_state.query_result = res
        st.session_state.last_query = query
        st.session_state.last_llm = llm
        st.session_state.followup_input = ""
        st.session_state.followup_response = None

    res = st.session_state.query_result
    if not res:
        st.info("Enter a question and press **Run Search πŸš€**")
        return

    tabs = st.tabs(["Results", "Genes", "Trials", "Variants", "Graph", "Metrics", "Visuals"])
    # --------------- Results Tab ---------------
    with tabs[0]:
        for i, p in enumerate(res.get("papers", []), 1):
            st.markdown(f"**{i}. [{p.get('title','')}]({p.get('link','')})**  *{p.get('authors','')}*")
            st.write(p.get("summary", ""))
        col1, col2 = st.columns(2)
        with col1:
            st.download_button("CSV", pd.DataFrame(res.get("papers", [])).to_csv(index=False),
                               "papers.csv", "text/csv")
        with col2:
            st.download_button("PDF", _pdf(res.get("papers", [])), "papers.pdf", "application/pdf")
        if st.button("πŸ’Ύ Save"):
            save_query(st.session_state.last_query, res)
            st.success("Saved to workspace")
        st.subheader("UMLS concepts")
        for c in res.get("umls", []):
            if isinstance(c, dict) and c.get("cui"):
                st.write(f"- **{c.get('name','')}** ({c.get('cui')})")
        st.subheader("OpenFDA safety signals")
        st.json(res.get("drug_safety", []))
        st.subheader("AI summary")
        st.info(res.get("ai_summary", ""))

    # --------------- Genes Tab ---------------
    with tabs[1]:
        st.header("Gene / Variant signals")
        genes = res.get("genes", [])
        if not genes:
            st.info("No gene hits (rate-limited or none found).")
        else:
            for g in genes:
                if isinstance(g, dict):
                    lab = g.get("name") or g.get("symbol") or g.get("geneid")
                    st.write(f"- **{lab}** {g.get('description','')}")
        if res.get("gene_disease"):
            st.markdown("### DisGeNET associations")
            st.json(res.get("gene_disease")[:15])
        if res.get("mesh_defs"):
            st.markdown("### MeSH definitions")
            for d in res["mesh_defs"]:
                if d:
                    st.write("-", d)

    # --------------- Trials Tab ---------------
    with tabs[2]:
        st.header("Clinical trials")
        trials = res.get("clinical_trials", [])
        if not trials:
            st.info("No trials (rate-limited or none found).")
        else:
            for t in trials:
                nct = t.get("nctId") or (t.get("NCTId", [""])[0] if isinstance(t.get("NCTId"), list) else "")
                title = t.get("briefTitle") or (t.get("BriefTitle", [""])[0] if isinstance(t.get("BriefTitle"), list) else "")
                phase = t.get("phase") or (t.get("Phase", [""])[0] if isinstance(t.get("Phase"), list) else "")
                status = t.get("status") or (t.get("OverallStatus", [""])[0] if isinstance(t.get("OverallStatus"), list) else "")
                st.markdown(f"**{nct}** – {title}")
                st.write(f"Phase {phase} | Status {status}")

    # --------------- Variants Tab ---------------
    with tabs[3]:
        st.header("Cancer variants (cBioPortal)")
        variants = res.get("variants", [])
        if not variants:
            st.info("No variant data.")
        else:
            for v in variants:
                st.json(v)

    # --------------- Graph Tab ---------------
    with tabs[4]:
        nodes, edges, cfg = build_agraph(res.get("papers", []), res.get("umls", []), res.get("drug_safety", []))
        hl = st.text_input("Highlight node:", key="hl")
        if hl:
            pat = re.compile(re.escape(hl), re.I)
            for n in nodes:
                n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
        agraph(nodes, edges, cfg)

    # --------------- Metrics Tab ---------------
    with tabs[5]:
        nodes, edges, _ = build_agraph(res.get("papers", []), res.get("umls", []), res.get("drug_safety", []))
        G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
        st.metric("Density", f"{get_density(G):.3f}")
        st.markdown("**Top hubs**")
        for nid, sc in get_top_hubs(G):
            lab = next((n.label for n in nodes if n.id == nid), nid)
            st.write(f"- {lab}  {sc:.3f}")

    # --------------- Visuals Tab ---------------
    with tabs[6]:
        years = [p.get("published", "") for p in res.get("papers", []) if p.get("published")]
        if years:
            st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))

    # --------------- Follow-up Q&A ---------------
    st.markdown("---")
    st.text_input("Ask follow‑up question:", key="followup_input")
    def handle_followup():
        follow = st.session_state.followup_input
        if follow.strip():
            ans = asyncio.run(answer_ai_question(
                follow,
                context=st.session_state.last_query,
                llm=st.session_state.last_llm))
            st.session_state.followup_response = ans.get("answer", "No answer.")
        else:
            st.session_state.followup_response = None
    st.button("Ask AI", on_click=handle_followup)
    if st.session_state.followup_response:
        st.write(st.session_state.followup_response)

if __name__ == "__main__":
    render_ui()