|
|
|
|
|
import asyncio |
|
from mcp.pubmed import fetch_pubmed |
|
from mcp.arxiv import fetch_arxiv |
|
from mcp.umls import extract_umls_concepts |
|
from mcp.openfda import fetch_drug_safety |
|
from mcp.ncbi import search_gene, get_mesh_definition |
|
from mcp.mygene import fetch_gene_info |
|
from mcp.ensembl import fetch_ensembl |
|
from mcp.opentargets import fetch_ot |
|
from mcp.clinicaltrials import search_trials |
|
from mcp.cbio import fetch_cbio |
|
from mcp.gemini import gemini_summarize, gemini_qa |
|
from mcp.openai_utils import ai_summarize, ai_qa |
|
from mcp.disgenet import disease_to_genes |
|
|
|
async def orchestrate_search(query, llm="openai"): |
|
|
|
pubmed_task = asyncio.create_task(fetch_pubmed(query, max_results=7)) |
|
arxiv_task = asyncio.create_task(fetch_arxiv(query, max_results=7)) |
|
|
|
umls_task = asyncio.create_task(extract_umls_concepts(query)) |
|
fda_task = asyncio.create_task(fetch_drug_safety(query)) |
|
gene_ncbi_task = asyncio.create_task(search_gene(query)) |
|
mygene_task = asyncio.create_task(fetch_gene_info(query)) |
|
ensembl_task = asyncio.create_task(fetch_ensembl(query)) |
|
ot_task = asyncio.create_task(fetch_ot(query)) |
|
mesh_task = asyncio.create_task(get_mesh_definition(query)) |
|
|
|
trials_task = asyncio.create_task(search_trials(query, max_studies=10)) |
|
cbio_task = asyncio.create_task(fetch_cbio(query)) |
|
disgenet_task = asyncio.create_task(disease_to_genes(query)) |
|
|
|
|
|
pubmed, arxiv, umls, fda, ncbi, mygene, ensembl, ot, mesh, trials, cbio, disgenet = await asyncio.gather( |
|
pubmed_task, arxiv_task, umls_task, fda_task, gene_ncbi_task, |
|
mygene_task, ensembl_task, ot_task, mesh_task, trials_task, cbio_task, disgenet_task |
|
) |
|
|
|
genes = [] |
|
for g in (ncbi, mygene, ensembl, ot): |
|
if isinstance(g, list): |
|
genes.extend(g) |
|
elif isinstance(g, dict) and g: |
|
genes.append(g) |
|
genes = [g for i, g in enumerate(genes) if g and genes.index(g) == i] |
|
|
|
|
|
papers = (pubmed or []) + (arxiv or []) |
|
if llm == "gemini": |
|
ai_summary = await gemini_summarize(" ".join([p.get("summary", "") for p in papers])) |
|
llm_used = "gemini" |
|
else: |
|
ai_summary = await ai_summarize(" ".join([p.get("summary", "") for p in papers])) |
|
llm_used = "openai" |
|
|
|
return { |
|
"papers": papers, |
|
"genes": genes, |
|
"umls": umls or [], |
|
"gene_disease": disgenet if isinstance(disgenet, list) else [], |
|
"mesh_defs": [mesh] if isinstance(mesh, str) and mesh else [], |
|
"drug_safety": fda or [], |
|
"clinical_trials": trials or [], |
|
"variants": cbio if isinstance(cbio, list) else [], |
|
"ai_summary": ai_summary, |
|
"llm_used": llm_used |
|
} |
|
|
|
async def answer_ai_question(question, context="", llm="openai"): |
|
|
|
try: |
|
if llm == "gemini": |
|
answer = await gemini_qa(question, context) |
|
else: |
|
answer = await ai_qa(question, context) |
|
except Exception as e: |
|
answer = f"LLM unavailable or quota exceeded. ({e})" |
|
return {"answer": answer} |
|
|