Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,21 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from pathlib import Path
|
5 |
|
6 |
import streamlit as st
|
@@ -9,25 +24,38 @@ import plotly.express as px
|
|
9 |
from fpdf import FPDF
|
10 |
from streamlit_agraph import agraph
|
11 |
|
|
|
|
|
|
|
12 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
13 |
from mcp.workspace import get_workspace, save_query
|
14 |
from mcp.knowledge_graph import build_agraph
|
15 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
16 |
from mcp.alerts import check_alerts
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
os.environ
|
|
|
|
|
|
|
|
|
22 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
23 |
|
24 |
ROOT = Path(__file__).parent
|
25 |
LOGO = ROOT / "assets" / "logo.png"
|
26 |
|
|
|
|
|
|
|
|
|
27 |
def _latin1_safe(txt: str) -> str:
|
|
|
28 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
29 |
|
30 |
-
|
|
|
31 |
pdf = FPDF()
|
32 |
pdf.set_auto_page_break(auto=True, margin=15)
|
33 |
pdf.add_page()
|
@@ -36,13 +64,16 @@ def _pdf(papers):
|
|
36 |
pdf.ln(3)
|
37 |
for i, p in enumerate(papers, 1):
|
38 |
pdf.set_font("Helvetica", "B", 11)
|
39 |
-
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title',
|
40 |
pdf.set_font("Helvetica", "", 9)
|
41 |
-
body = f"{p.get('authors','')}
|
|
|
|
|
42 |
pdf.multi_cell(0, 6, _latin1_safe(body))
|
43 |
pdf.ln(1)
|
44 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
45 |
|
|
|
46 |
def _workspace_sidebar():
|
47 |
with st.sidebar:
|
48 |
st.header("🗂️ Workspace")
|
@@ -52,141 +83,140 @@ def _workspace_sidebar():
|
|
52 |
return
|
53 |
for i, item in enumerate(ws, 1):
|
54 |
with st.expander(f"{i}. {item['query']}"):
|
55 |
-
st.write(item[
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def render_ui():
|
58 |
st.set_page_config("MedGenesis AI", layout="wide")
|
59 |
|
60 |
-
# Session
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
_workspace_sidebar()
|
69 |
-
|
70 |
-
|
|
|
|
|
71 |
if LOGO.exists():
|
72 |
st.image(str(LOGO), width=105)
|
73 |
-
with
|
74 |
st.markdown("## 🧬 **MedGenesis AI**")
|
75 |
-
st.caption("Multi
|
76 |
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
# Alerts
|
81 |
-
|
82 |
-
if wsq:
|
83 |
try:
|
84 |
-
|
85 |
-
if
|
86 |
with st.sidebar:
|
87 |
st.subheader("🔔 New papers")
|
88 |
-
for q, lnks in
|
89 |
st.write(f"**{q}** – {len(lnks)} new")
|
90 |
except Exception:
|
91 |
pass
|
92 |
|
|
|
93 |
if st.button("Run Search 🚀") and query:
|
94 |
with st.spinner("Collecting literature & biomedical data …"):
|
95 |
-
res = asyncio.run(orchestrate_search(query, llm=
|
96 |
-
st.
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
|
103 |
res = st.session_state.query_result
|
104 |
if not res:
|
105 |
st.info("Enter a question and press **Run Search 🚀**")
|
106 |
return
|
107 |
|
|
|
108 |
tabs = st.tabs(["Results", "Genes", "Trials", "Variants", "Graph", "Metrics", "Visuals"])
|
109 |
-
|
|
|
110 |
with tabs[0]:
|
111 |
-
|
|
|
112 |
st.markdown(f"**{i}. [{p.get('title','')}]({p.get('link','')})** *{p.get('authors','')}*")
|
113 |
-
st.write(p.get(
|
114 |
-
|
115 |
-
with
|
116 |
-
st.download_button("CSV", pd.DataFrame(res
|
117 |
-
|
118 |
-
|
119 |
-
st.download_button("PDF", _pdf(res.get("papers", [])), "papers.pdf", "application/pdf")
|
120 |
if st.button("💾 Save"):
|
121 |
save_query(st.session_state.last_query, res)
|
122 |
st.success("Saved to workspace")
|
|
|
123 |
st.subheader("UMLS concepts")
|
124 |
-
for c in res
|
125 |
-
if
|
126 |
st.write(f"- **{c.get('name','')}** ({c.get('cui')})")
|
|
|
127 |
st.subheader("OpenFDA safety signals")
|
128 |
-
|
|
|
|
|
129 |
st.subheader("AI summary")
|
130 |
-
st.info(res
|
131 |
|
132 |
-
#
|
133 |
with tabs[1]:
|
134 |
st.header("Gene / Variant signals")
|
135 |
-
|
136 |
-
|
137 |
-
st.
|
138 |
-
|
139 |
-
for g in genes:
|
140 |
-
if isinstance(g, dict):
|
141 |
-
lab = g.get("name") or g.get("symbol") or g.get("geneid")
|
142 |
-
st.write(f"- **{lab}** {g.get('description','')}")
|
143 |
-
if res.get("gene_disease"):
|
144 |
-
st.markdown("### DisGeNET associations")
|
145 |
-
st.json(res.get("gene_disease")[:15])
|
146 |
-
if res.get("mesh_defs"):
|
147 |
st.markdown("### MeSH definitions")
|
148 |
-
for d in res[
|
149 |
-
|
150 |
-
|
|
|
|
|
151 |
|
152 |
-
#
|
153 |
with tabs[2]:
|
154 |
st.header("Clinical trials")
|
155 |
-
trials = res
|
156 |
if not trials:
|
157 |
-
st.info("No trials (rate
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
phase = t.get("phase") or (t.get("Phase", [""])[0] if isinstance(t.get("Phase"), list) else "")
|
163 |
-
status = t.get("status") or (t.get("OverallStatus", [""])[0] if isinstance(t.get("OverallStatus"), list) else "")
|
164 |
-
st.markdown(f"**{nct}** – {title}")
|
165 |
-
st.write(f"Phase {phase} | Status {status}")
|
166 |
-
|
167 |
-
# --------------- Variants Tab ---------------
|
168 |
with tabs[3]:
|
169 |
st.header("Cancer variants (cBioPortal)")
|
170 |
-
variants = res
|
171 |
if not variants:
|
172 |
-
st.info("No
|
173 |
else:
|
174 |
-
|
175 |
-
st.json(v)
|
176 |
|
177 |
-
#
|
178 |
with tabs[4]:
|
179 |
-
nodes, edges, cfg = build_agraph(res
|
180 |
-
hl = st.text_input("Highlight node:", key="hl")
|
181 |
-
if hl:
|
182 |
-
pat = re.compile(re.escape(hl), re.I)
|
183 |
-
for n in nodes:
|
184 |
-
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
185 |
agraph(nodes, edges, cfg)
|
186 |
|
187 |
-
#
|
188 |
with tabs[5]:
|
189 |
-
nodes, edges, _ = build_agraph(res.get("papers", []), res.get("umls", []), res.get("drug_safety", []))
|
190 |
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
191 |
st.metric("Density", f"{get_density(G):.3f}")
|
192 |
st.markdown("**Top hubs**")
|
@@ -194,28 +224,31 @@ def render_ui():
|
|
194 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
195 |
st.write(f"- {lab} {sc:.3f}")
|
196 |
|
197 |
-
#
|
198 |
with tabs[6]:
|
199 |
-
years = [p.get(
|
200 |
if years:
|
201 |
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
202 |
|
203 |
-
#
|
204 |
st.markdown("---")
|
205 |
st.text_input("Ask follow‑up question:", key="followup_input")
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
st.button("Ask AI", on_click=
|
217 |
if st.session_state.followup_response:
|
218 |
st.write(st.session_state.followup_response)
|
219 |
|
|
|
|
|
|
|
220 |
if __name__ == "__main__":
|
221 |
render_ui()
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
MedGenesis AI – Streamlit front‑end (v3)
|
4 |
+
--------------------------------------
|
5 |
+
Supports **OpenAI** and **Gemini** engines and the enriched backend
|
6 |
+
payload introduced in orchestrator v3:
|
7 |
+
• papers, umls, drug_safety, genes, mesh_defs, gene_disease,
|
8 |
+
clinical_trials, variants, ai_summary
|
9 |
+
Tabs:
|
10 |
+
Results | Genes | Trials | Variants | Graph | Metrics | Visuals
|
11 |
+
"""
|
12 |
+
|
13 |
+
##############################################################################
|
14 |
+
# Std‑lib / third‑party
|
15 |
+
##############################################################################
|
16 |
+
import os
|
17 |
+
import pathlib
|
18 |
+
import asyncio
|
19 |
from pathlib import Path
|
20 |
|
21 |
import streamlit as st
|
|
|
24 |
from fpdf import FPDF
|
25 |
from streamlit_agraph import agraph
|
26 |
|
27 |
+
##############################################################################
|
28 |
+
# Internal helpers
|
29 |
+
##############################################################################
|
30 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
31 |
from mcp.workspace import get_workspace, save_query
|
32 |
from mcp.knowledge_graph import build_agraph
|
33 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
34 |
from mcp.alerts import check_alerts
|
35 |
|
36 |
+
# ---------------------------------------------------------------------------
|
37 |
+
# Streamlit telemetry directory → /tmp
|
38 |
+
# ---------------------------------------------------------------------------
|
39 |
+
os.environ.update({
|
40 |
+
"STREAMLIT_DATA_DIR": "/tmp/.streamlit",
|
41 |
+
"XDG_STATE_HOME" : "/tmp",
|
42 |
+
"STREAMLIT_BROWSER_GATHERUSAGESTATS": "false",
|
43 |
+
})
|
44 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
45 |
|
46 |
ROOT = Path(__file__).parent
|
47 |
LOGO = ROOT / "assets" / "logo.png"
|
48 |
|
49 |
+
##############################################################################
|
50 |
+
# Utility helpers
|
51 |
+
##############################################################################
|
52 |
+
|
53 |
def _latin1_safe(txt: str) -> str:
|
54 |
+
"""Coerce UTF‑8 → Latin‑1 with replacement (for FPDF)."""
|
55 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
56 |
|
57 |
+
|
58 |
+
def _pdf(papers: list[dict]) -> bytes:
|
59 |
pdf = FPDF()
|
60 |
pdf.set_auto_page_break(auto=True, margin=15)
|
61 |
pdf.add_page()
|
|
|
64 |
pdf.ln(3)
|
65 |
for i, p in enumerate(papers, 1):
|
66 |
pdf.set_font("Helvetica", "B", 11)
|
67 |
+
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title','')}"))
|
68 |
pdf.set_font("Helvetica", "", 9)
|
69 |
+
body = f"{p.get('authors','')}
|
70 |
+
{p.get('summary','')}
|
71 |
+
{p.get('link','')}\n"
|
72 |
pdf.multi_cell(0, 6, _latin1_safe(body))
|
73 |
pdf.ln(1)
|
74 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
75 |
|
76 |
+
|
77 |
def _workspace_sidebar():
|
78 |
with st.sidebar:
|
79 |
st.header("🗂️ Workspace")
|
|
|
83 |
return
|
84 |
for i, item in enumerate(ws, 1):
|
85 |
with st.expander(f"{i}. {item['query']}"):
|
86 |
+
st.write(item['result']['ai_summary'])
|
87 |
+
|
88 |
+
##############################################################################
|
89 |
+
# Main UI renderer
|
90 |
+
##############################################################################
|
91 |
|
92 |
def render_ui():
|
93 |
st.set_page_config("MedGenesis AI", layout="wide")
|
94 |
|
95 |
+
# Session‑state defaults
|
96 |
+
defaults = dict(
|
97 |
+
query_result=None,
|
98 |
+
followup_input="",
|
99 |
+
followup_response=None,
|
100 |
+
last_query="",
|
101 |
+
last_llm="openai",
|
102 |
+
)
|
103 |
+
for k, v in defaults.items():
|
104 |
+
st.session_state.setdefault(k, v)
|
105 |
|
106 |
_workspace_sidebar()
|
107 |
+
|
108 |
+
# Header
|
109 |
+
col1, col2 = st.columns([0.15, 0.85])
|
110 |
+
with col1:
|
111 |
if LOGO.exists():
|
112 |
st.image(str(LOGO), width=105)
|
113 |
+
with col2:
|
114 |
st.markdown("## 🧬 **MedGenesis AI**")
|
115 |
+
st.caption("Multi‑source biomedical assistant · OpenAI / Gemini")
|
116 |
|
117 |
+
# Controls
|
118 |
+
engine = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
119 |
+
query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy")
|
120 |
|
121 |
# Alerts
|
122 |
+
if get_workspace():
|
|
|
123 |
try:
|
124 |
+
alerts = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
|
125 |
+
if alerts:
|
126 |
with st.sidebar:
|
127 |
st.subheader("🔔 New papers")
|
128 |
+
for q, lnks in alerts.items():
|
129 |
st.write(f"**{q}** – {len(lnks)} new")
|
130 |
except Exception:
|
131 |
pass
|
132 |
|
133 |
+
# Run Search
|
134 |
if st.button("Run Search 🚀") and query:
|
135 |
with st.spinner("Collecting literature & biomedical data …"):
|
136 |
+
res = asyncio.run(orchestrate_search(query, llm=engine))
|
137 |
+
st.session_state.update(
|
138 |
+
query_result=res,
|
139 |
+
last_query=query,
|
140 |
+
last_llm=engine,
|
141 |
+
followup_input="",
|
142 |
+
followup_response=None,
|
143 |
+
)
|
144 |
+
st.success(f"Completed with **{res['llm_used'].title()}**")
|
145 |
|
146 |
res = st.session_state.query_result
|
147 |
if not res:
|
148 |
st.info("Enter a question and press **Run Search 🚀**")
|
149 |
return
|
150 |
|
151 |
+
# Tabs
|
152 |
tabs = st.tabs(["Results", "Genes", "Trials", "Variants", "Graph", "Metrics", "Visuals"])
|
153 |
+
|
154 |
+
# --- Results tab
|
155 |
with tabs[0]:
|
156 |
+
st.subheader("Literature")
|
157 |
+
for i, p in enumerate(res['papers'], 1):
|
158 |
st.markdown(f"**{i}. [{p.get('title','')}]({p.get('link','')})** *{p.get('authors','')}*")
|
159 |
+
st.write(p.get('summary',''))
|
160 |
+
c1, c2 = st.columns(2)
|
161 |
+
with c1:
|
162 |
+
st.download_button("CSV", pd.DataFrame(res['papers']).to_csv(index=False), "papers.csv", "text/csv")
|
163 |
+
with c2:
|
164 |
+
st.download_button("PDF", _pdf(res['papers']), "papers.pdf", "application/pdf")
|
|
|
165 |
if st.button("💾 Save"):
|
166 |
save_query(st.session_state.last_query, res)
|
167 |
st.success("Saved to workspace")
|
168 |
+
|
169 |
st.subheader("UMLS concepts")
|
170 |
+
for c in res['umls']:
|
171 |
+
if c.get('cui'):
|
172 |
st.write(f"- **{c.get('name','')}** ({c.get('cui')})")
|
173 |
+
|
174 |
st.subheader("OpenFDA safety signals")
|
175 |
+
for d in res['drug_safety']:
|
176 |
+
st.json(d)
|
177 |
+
|
178 |
st.subheader("AI summary")
|
179 |
+
st.info(res['ai_summary'])
|
180 |
|
181 |
+
# --- Genes tab
|
182 |
with tabs[1]:
|
183 |
st.header("Gene / Variant signals")
|
184 |
+
for g in res['genes']:
|
185 |
+
sym = g.get('symbol') or g.get('name') or ''
|
186 |
+
st.write(f"- **{sym}**")
|
187 |
+
if res['mesh_defs']:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
st.markdown("### MeSH definitions")
|
189 |
+
for d in res['mesh_defs']:
|
190 |
+
st.write(f"- {d}")
|
191 |
+
if res['gene_disease']:
|
192 |
+
st.markdown("### DisGeNET links")
|
193 |
+
st.json(res['gene_disease'][:15])
|
194 |
|
195 |
+
# --- Trials tab
|
196 |
with tabs[2]:
|
197 |
st.header("Clinical trials")
|
198 |
+
trials = res['clinical_trials']
|
199 |
if not trials:
|
200 |
+
st.info("No trials returned (rate‑limited or none found).")
|
201 |
+
for t in trials:
|
202 |
+
st.markdown(f"**{t.get('nctId','')}** – {t.get('briefTitle','')} Phase {t.get('phase','?')} | Status {t.get('status','?')}")
|
203 |
+
|
204 |
+
# --- Variants tab
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
with tabs[3]:
|
206 |
st.header("Cancer variants (cBioPortal)")
|
207 |
+
variants = res['variants']
|
208 |
if not variants:
|
209 |
+
st.info("No variants for this gene/profile.")
|
210 |
else:
|
211 |
+
st.json(variants[:30])
|
|
|
212 |
|
213 |
+
# --- Graph tab
|
214 |
with tabs[4]:
|
215 |
+
nodes, edges, cfg = build_agraph(res['papers'], res['umls'], res['drug_safety'])
|
|
|
|
|
|
|
|
|
|
|
216 |
agraph(nodes, edges, cfg)
|
217 |
|
218 |
+
# --- Metrics tab
|
219 |
with tabs[5]:
|
|
|
220 |
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
221 |
st.metric("Density", f"{get_density(G):.3f}")
|
222 |
st.markdown("**Top hubs**")
|
|
|
224 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
225 |
st.write(f"- {lab} {sc:.3f}")
|
226 |
|
227 |
+
# --- Visuals tab
|
228 |
with tabs[6]:
|
229 |
+
years = [p.get('published') for p in res['papers'] if p.get('published')]
|
230 |
if years:
|
231 |
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
232 |
|
233 |
+
# Follow‑up QA
|
234 |
st.markdown("---")
|
235 |
st.text_input("Ask follow‑up question:", key="followup_input")
|
236 |
+
|
237 |
+
def _on_ask():
|
238 |
+
q = st.session_state.followup_input
|
239 |
+
if not q.strip():
|
240 |
+
st.warning("Please type a question first.")
|
241 |
+
return
|
242 |
+
with st.spinner("Querying LLM …"):
|
243 |
+
ans = asyncio.run(answer_ai_question(q, context=st.session_state.last_query, llm=st.session_state.last_llm))
|
244 |
+
st.session_state.followup_response = ans['answer']
|
245 |
+
|
246 |
+
st.button("Ask AI", on_click=_on_ask)
|
247 |
if st.session_state.followup_response:
|
248 |
st.write(st.session_state.followup_response)
|
249 |
|
250 |
+
##############################################################################
|
251 |
+
# Entrypoint
|
252 |
+
##############################################################################
|
253 |
if __name__ == "__main__":
|
254 |
render_ui()
|