mgbam commited on
Commit
b7db50c
·
verified ·
1 Parent(s): 0fb7617

Update mcp/orchestrator.py

Browse files
Files changed (1) hide show
  1. mcp/orchestrator.py +3 -3
mcp/orchestrator.py CHANGED
@@ -21,7 +21,7 @@ from mcp.umls import lookup_umls
21
  from mcp.openfda import fetch_drug_safety
22
  from mcp.disgenet import disease_to_genes
23
  from mcp.clinicaltrials import fetch_clinical_trials
24
- from mcp.cbio import fetch_cbio_variants
25
  from mcp.openai_utils import ai_summarize, ai_qa
26
  from mcp.gemini import gemini_summarize, gemini_qa
27
 
@@ -117,7 +117,7 @@ async def orchestrate_search(query: str, llm: str = _DEFAULT_LLM) -> Dict[str, A
117
  gene_task = asyncio.create_task(_gene_enrichment(seeds))
118
  trials_t = asyncio.create_task(fetch_clinical_trials(query, max_studies=10))
119
  cbio_t = asyncio.create_task(
120
- fetch_cbio_variants(seeds[0]) if seeds else asyncio.sleep(0, result=[])
121
  )
122
 
123
  umls_list, fda_list, gene_data, trials, variants = await asyncio.gather(
@@ -173,7 +173,7 @@ async def orchestrate_search(query: str, llm: str = _DEFAULT_LLM) -> Dict[str, A
173
 
174
  async def answer_ai_question(question: str, context: str, llm: str = _DEFAULT_LLM) -> Dict[str, str]:
175
  """
176
- Follow-up QA: uses the designated QA function from the LLM router.
177
  """
178
  _, qa_fn, _ = _llm_router(llm)
179
  prompt = f"Q: {question}\nContext: {context}\nA:"
 
21
  from mcp.openfda import fetch_drug_safety
22
  from mcp.disgenet import disease_to_genes
23
  from mcp.clinicaltrials import fetch_clinical_trials
24
+ from mcp.cbio import fetch_cbio
25
  from mcp.openai_utils import ai_summarize, ai_qa
26
  from mcp.gemini import gemini_summarize, gemini_qa
27
 
 
117
  gene_task = asyncio.create_task(_gene_enrichment(seeds))
118
  trials_t = asyncio.create_task(fetch_clinical_trials(query, max_studies=10))
119
  cbio_t = asyncio.create_task(
120
+ fetch_cbio(seeds[0]) if seeds else asyncio.sleep(0, result=[])
121
  )
122
 
123
  umls_list, fda_list, gene_data, trials, variants = await asyncio.gather(
 
173
 
174
  async def answer_ai_question(question: str, context: str, llm: str = _DEFAULT_LLM) -> Dict[str, str]:
175
  """
176
+ Follow-up QA: uses the chosen LLM’s QA function.
177
  """
178
  _, qa_fn, _ = _llm_router(llm)
179
  prompt = f"Q: {question}\nContext: {context}\nA:"