Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +36 -31
mcp/orchestrator.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
# mcp/orchestrator.py
|
2 |
import asyncio
|
3 |
-
from typing import
|
4 |
from mcp.arxiv import fetch_arxiv
|
5 |
from mcp.pubmed import fetch_pubmed
|
6 |
from mcp.nlp import extract_umls_concepts
|
7 |
-
from mcp.umls import lookup_umls
|
8 |
from mcp.umls_rel import fetch_relations
|
9 |
from mcp.openfda import fetch_drug_safety
|
10 |
from mcp.ncbi import search_gene, get_mesh_definition
|
@@ -17,63 +16,69 @@ from mcp.openai_utils import ai_summarize, ai_qa
|
|
17 |
from mcp.gemini import gemini_summarize, gemini_qa
|
18 |
|
19 |
def _get_llm(llm: str):
|
20 |
-
return (gemini_summarize, gemini_qa) if llm.lower()=="gemini" else (ai_summarize, ai_qa)
|
21 |
|
22 |
-
async def orchestrate_search(query: str, llm: str="openai") -> Dict[str,Any]:
|
23 |
-
# 1) literature
|
24 |
arxiv_t, pubmed_t = fetch_arxiv(query), fetch_pubmed(query)
|
25 |
papers = []
|
26 |
for res in await asyncio.gather(arxiv_t, pubmed_t, return_exceptions=True):
|
27 |
if isinstance(res, list):
|
28 |
papers.extend(res)
|
29 |
|
30 |
-
# 2) UMLS concept linking
|
31 |
blob = " ".join(p.get("summary","") for p in papers)
|
32 |
-
umls = extract_umls_concepts(blob)
|
33 |
-
rels = await asyncio.gather(*[fetch_relations(c["cui"]) for c in umls], return_exceptions=True)
|
34 |
|
35 |
-
# 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
keys = [c["name"] for c in umls]
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
fda,
|
46 |
-
asyncio.gather(*
|
47 |
-
|
|
|
48 |
return_exceptions=False
|
49 |
)
|
50 |
|
51 |
-
#
|
52 |
summarize, _ = _get_llm(llm)
|
53 |
try:
|
54 |
-
|
55 |
-
except:
|
56 |
-
|
57 |
|
58 |
return {
|
59 |
"papers": papers,
|
60 |
"umls": umls,
|
61 |
"umls_relations": rels,
|
62 |
"drug_safety": fda,
|
63 |
-
"genes": [
|
64 |
"mesh_defs": [mesh],
|
65 |
"gene_disease": dis,
|
66 |
"clinical_trials": trials,
|
67 |
"ot_associations": ot_assoc,
|
68 |
"variants": variants,
|
69 |
-
"ai_summary":
|
70 |
"llm_used": llm.lower()
|
71 |
}
|
72 |
|
73 |
-
async def answer_ai_question(question: str, context: str="", llm: str="openai"):
|
74 |
-
_,
|
75 |
try:
|
76 |
-
|
77 |
-
except:
|
78 |
-
|
79 |
-
return {"answer":
|
|
|
1 |
# mcp/orchestrator.py
|
2 |
import asyncio
|
3 |
+
from typing import Dict, Any
|
4 |
from mcp.arxiv import fetch_arxiv
|
5 |
from mcp.pubmed import fetch_pubmed
|
6 |
from mcp.nlp import extract_umls_concepts
|
|
|
7 |
from mcp.umls_rel import fetch_relations
|
8 |
from mcp.openfda import fetch_drug_safety
|
9 |
from mcp.ncbi import search_gene, get_mesh_definition
|
|
|
16 |
from mcp.gemini import gemini_summarize, gemini_qa
|
17 |
|
18 |
def _get_llm(llm: str):
|
19 |
+
return (gemini_summarize, gemini_qa) if llm.lower() == "gemini" else (ai_summarize, ai_qa)
|
20 |
|
21 |
+
async def orchestrate_search(query: str, llm: str = "openai") -> Dict[str, Any]:
|
22 |
+
# 1) Parallel literature pulls
|
23 |
arxiv_t, pubmed_t = fetch_arxiv(query), fetch_pubmed(query)
|
24 |
papers = []
|
25 |
for res in await asyncio.gather(arxiv_t, pubmed_t, return_exceptions=True):
|
26 |
if isinstance(res, list):
|
27 |
papers.extend(res)
|
28 |
|
29 |
+
# 2) SpaCy→UMLS concept linking
|
30 |
blob = " ".join(p.get("summary","") for p in papers)
|
31 |
+
umls = await extract_umls_concepts(blob)
|
|
|
32 |
|
33 |
+
# 3) Fetch UMLS relations in parallel
|
34 |
+
rels = await asyncio.gather(
|
35 |
+
*[fetch_relations(c["cui"]) for c in umls],
|
36 |
+
return_exceptions=True
|
37 |
+
)
|
38 |
+
|
39 |
+
# 4) Enrich: OpenFDA, NCBI, DisGeNET, Trials, OpenTargets, cBioPortal
|
40 |
keys = [c["name"] for c in umls]
|
41 |
+
fda_tasks = [fetch_drug_safety(k) for k in keys]
|
42 |
+
gene_task = search_gene(keys[0]) if keys else asyncio.sleep(0, result=[])
|
43 |
+
mesh_task = get_mesh_definition(keys[0]) if keys else asyncio.sleep(0, result="")
|
44 |
+
dis_task = disease_to_genes(keys[0]) if keys else asyncio.sleep(0, result=[])
|
45 |
+
trials_task = search_trials(query)
|
46 |
+
ot_task = ot.fetch(keys[0]) if keys else asyncio.sleep(0, result=[])
|
47 |
+
cbio_task = cbio.fetch_variants(keys[0]) if keys else asyncio.sleep(0, result=[])
|
48 |
|
49 |
+
fda, gene, mesh, dis, trials, ot_assoc, variants = await asyncio.gather(
|
50 |
+
asyncio.gather(*fda_tasks, return_exceptions=True),
|
51 |
+
gene_task, mesh_task, dis_task,
|
52 |
+
trials_task, ot_task, cbio_task,
|
53 |
return_exceptions=False
|
54 |
)
|
55 |
|
56 |
+
# 5) AI summary
|
57 |
summarize, _ = _get_llm(llm)
|
58 |
try:
|
59 |
+
ai_summary = await summarize(blob)
|
60 |
+
except Exception:
|
61 |
+
ai_summary = "LLM summary failed."
|
62 |
|
63 |
return {
|
64 |
"papers": papers,
|
65 |
"umls": umls,
|
66 |
"umls_relations": rels,
|
67 |
"drug_safety": fda,
|
68 |
+
"genes": [gene],
|
69 |
"mesh_defs": [mesh],
|
70 |
"gene_disease": dis,
|
71 |
"clinical_trials": trials,
|
72 |
"ot_associations": ot_assoc,
|
73 |
"variants": variants,
|
74 |
+
"ai_summary": ai_summary,
|
75 |
"llm_used": llm.lower()
|
76 |
}
|
77 |
|
78 |
+
async def answer_ai_question(question: str, context: str = "", llm: str = "openai"):
|
79 |
+
_, qa_fn = _get_llm(llm)
|
80 |
try:
|
81 |
+
answer = await qa_fn(question, context)
|
82 |
+
except Exception:
|
83 |
+
answer = "LLM follow-up failed."
|
84 |
+
return {"answer": answer}
|