Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +66 -80
mcp/orchestrator.py
CHANGED
@@ -1,131 +1,117 @@
|
|
1 |
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"""
|
3 |
-
MedGenesis β dualβLLM asynchronous orchestrator
|
4 |
-
==============================================
|
5 |
-
β’ Accepts `llm` argument ("openai" | "gemini"), defaults to "openai".
|
6 |
-
β’ Harvests literature (PubMedβ―+β―arXiv) β extracts keywords.
|
7 |
-
β’ Fansβout to open APIs for genes, trials, safety, ontology:
|
8 |
-
β **MyGene.info** for live gene annotations
|
9 |
-
β **ClinicalTrials.govΒ v2** for recruiting & completed studies
|
10 |
-
β UMLSβ―/β―openFDAβ―/β―DisGeNETβ―/β―MeSH (existing helpers)
|
11 |
-
β Optional OpenΒ Targets & DrugCentral via `multi_enrich` if needed.
|
12 |
-
β’ Returns a single JSONβserialisable dict consumed by the Streamlit UI.
|
13 |
-
"""
|
14 |
-
|
15 |
from __future__ import annotations
|
16 |
|
17 |
import asyncio
|
18 |
from typing import Any, Dict, List
|
19 |
|
20 |
-
# ββ
|
21 |
-
from mcp.arxiv
|
22 |
-
from mcp.pubmed
|
23 |
-
|
24 |
-
|
25 |
-
from mcp.
|
26 |
-
from mcp.
|
27 |
-
from mcp.
|
28 |
-
from mcp.
|
29 |
-
from mcp.
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# from mcp.targets import fetch_ot_associations # (optional future use)
|
35 |
-
|
36 |
-
# ββ LLM utilities βββββββββββββββββββββββββββββββββββββββββββββββββ
|
37 |
-
from mcp.openai_utils import ai_summarize, ai_qa
|
38 |
-
from mcp.gemini import gemini_summarize, gemini_qa
|
39 |
-
|
40 |
-
# ------------------------------------------------------------------
|
41 |
# LLM router
|
42 |
-
#
|
|
|
43 |
|
44 |
-
def _get_llm(llm: str):
|
45 |
-
"""Return (summarize_fn, qa_fn) based on requested engine."""
|
46 |
if llm and llm.lower() == "gemini":
|
47 |
-
return gemini_summarize, gemini_qa
|
48 |
-
return ai_summarize, ai_qa
|
49 |
|
50 |
-
#
|
51 |
-
# Helper:
|
52 |
-
#
|
53 |
-
async def
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
results = await asyncio.gather(*
|
59 |
|
60 |
-
genes, mesh_defs,
|
61 |
-
n = len(keys)
|
62 |
for idx, res in enumerate(results):
|
63 |
if isinstance(res, Exception):
|
64 |
continue
|
65 |
-
bucket = idx
|
66 |
if bucket == 0:
|
67 |
genes.extend(res)
|
68 |
elif bucket == 1:
|
69 |
mesh_defs.append(res)
|
70 |
else:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
#
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
arxiv_task = asyncio.create_task(fetch_arxiv(query))
|
83 |
-
pubmed_task = asyncio.create_task(fetch_pubmed(query))
|
84 |
papers = sum(await asyncio.gather(arxiv_task, pubmed_task), [])
|
85 |
|
86 |
-
# 2)
|
87 |
corpus = " ".join(p["summary"] for p in papers)
|
88 |
keywords = extract_keywords(corpus)[:8]
|
89 |
|
90 |
-
# 3)
|
91 |
-
umls_tasks
|
92 |
-
fda_tasks
|
93 |
|
94 |
-
ncbi_task = asyncio.create_task(
|
95 |
-
|
96 |
-
trials_task = asyncio.create_task(
|
97 |
|
98 |
umls, fda, ncbi_data, mygene, trials = await asyncio.gather(
|
99 |
asyncio.gather(*umls_tasks, return_exceptions=True),
|
100 |
asyncio.gather(*fda_tasks, return_exceptions=True),
|
101 |
ncbi_task,
|
102 |
-
|
103 |
trials_task,
|
104 |
)
|
105 |
|
106 |
-
# 4)
|
107 |
-
summarize_fn, _ = _get_llm(llm)
|
108 |
ai_summary = await summarize_fn(corpus)
|
109 |
|
110 |
-
# 5)
|
111 |
return {
|
112 |
"papers" : papers,
|
113 |
"umls" : umls,
|
114 |
"drug_safety" : fda,
|
115 |
"ai_summary" : ai_summary,
|
116 |
-
"llm_used" :
|
117 |
|
118 |
-
#
|
119 |
"genes" : (ncbi_data["genes"] or []) + ([mygene] if mygene else []),
|
120 |
"mesh_defs" : ncbi_data["meshes"],
|
121 |
"gene_disease" : ncbi_data["disgenet"],
|
122 |
|
123 |
-
#
|
124 |
"clinical_trials": trials,
|
125 |
}
|
126 |
|
127 |
-
|
128 |
-
async def answer_ai_question(question: str, *, context: str, llm: str =
|
129 |
-
|
130 |
-
_, qa_fn = _get_llm(llm)
|
131 |
return {"answer": await qa_fn(question, context)}
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
"""MedGenesis β asynchronous orchestrator (v3)
|
3 |
+
|
4 |
+
β’ Pulls literature (PubMed + arXiv)
|
5 |
+
β’ Extracts keywords via spaCy β fansβout to:
|
6 |
+
β MyGene.info (gene annotations)
|
7 |
+
β ClinicalTrials.gov v2 (trials) with v1 fallback
|
8 |
+
β UMLS / openFDA / DisGeNET / MeSH
|
9 |
+
β’ Summarises with OpenAI or Gemini (userβselectable)
|
10 |
+
β’ Returns a single dict ready for Streamlit UI & pydantic schemas.
|
11 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from __future__ import annotations
|
13 |
|
14 |
import asyncio
|
15 |
from typing import Any, Dict, List
|
16 |
|
17 |
+
# ββ Internal modules ββββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
+
from mcp.arxiv import fetch_arxiv
|
19 |
+
from mcp.pubmed import fetch_pubmed
|
20 |
+
from mcp.nlp import extract_keywords
|
21 |
+
from mcp.umls import lookup_umls
|
22 |
+
from mcp.openfda import fetch_drug_safety
|
23 |
+
from mcp.ncbi import search_gene, get_mesh_definition
|
24 |
+
from mcp.disgenet import disease_to_genes
|
25 |
+
from mcp.mygene import fetch_gene_info
|
26 |
+
from mcp.ctgov import search_trials # v2 helper (v1 fallback inside)
|
27 |
+
from mcp.openai_utils import ai_summarize, ai_qa
|
28 |
+
from mcp.gemini import gemini_summarize, gemini_qa
|
29 |
+
|
30 |
+
# -------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# LLM router
|
32 |
+
# -------------------------------------------------------------------
|
33 |
+
_DEF_MODEL = "openai"
|
34 |
|
35 |
+
def _get_llm(llm: str | None):
|
|
|
36 |
if llm and llm.lower() == "gemini":
|
37 |
+
return gemini_summarize, gemini_qa, "gemini"
|
38 |
+
return ai_summarize, ai_qa, "openai"
|
39 |
|
40 |
+
# -------------------------------------------------------------------
|
41 |
+
# Helper: NCBI / MeSH / DisGeNET enrichment
|
42 |
+
# -------------------------------------------------------------------
|
43 |
+
async def _enrich_keywords(keys: List[str]) -> Dict[str, Any]:
|
44 |
+
tasks = []
|
45 |
+
for k in keys:
|
46 |
+
tasks += [search_gene(k), get_mesh_definition(k), disease_to_genes(k)]
|
47 |
|
48 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
49 |
|
50 |
+
genes, mesh_defs, disg = [], [], []
|
|
|
51 |
for idx, res in enumerate(results):
|
52 |
if isinstance(res, Exception):
|
53 |
continue
|
54 |
+
bucket = idx % 3
|
55 |
if bucket == 0:
|
56 |
genes.extend(res)
|
57 |
elif bucket == 1:
|
58 |
mesh_defs.append(res)
|
59 |
else:
|
60 |
+
disg.extend(res)
|
61 |
+
return {"genes": genes, "meshes": mesh_defs, "disgenet": disg}
|
62 |
+
|
63 |
+
# -------------------------------------------------------------------
|
64 |
+
# Public API
|
65 |
+
# -------------------------------------------------------------------
|
66 |
+
async def orchestrate_search(query: str, *, llm: str = _DEF_MODEL) -> Dict[str, Any]:
|
67 |
+
"""Run full async pipeline and return merged result dict."""
|
68 |
+
# 1) Literature --------------------------------------------------
|
69 |
+
arxiv_task = asyncio.create_task(fetch_arxiv(query, max_results=10))
|
70 |
+
pubmed_task = asyncio.create_task(fetch_pubmed(query, max_results=10))
|
|
|
|
|
71 |
papers = sum(await asyncio.gather(arxiv_task, pubmed_task), [])
|
72 |
|
73 |
+
# 2) Keyword extraction -----------------------------------------
|
74 |
corpus = " ".join(p["summary"] for p in papers)
|
75 |
keywords = extract_keywords(corpus)[:8]
|
76 |
|
77 |
+
# 3) Enrichment fanβout -----------------------------------------
|
78 |
+
umls_tasks = [lookup_umls(k) for k in keywords]
|
79 |
+
fda_tasks = [fetch_drug_safety(k) for k in keywords]
|
80 |
|
81 |
+
ncbi_task = asyncio.create_task(_enrich_keywords(keywords))
|
82 |
+
gene_task = asyncio.create_task(fetch_gene_info(query))
|
83 |
+
trials_task = asyncio.create_task(search_trials(query, max_studies=20))
|
84 |
|
85 |
umls, fda, ncbi_data, mygene, trials = await asyncio.gather(
|
86 |
asyncio.gather(*umls_tasks, return_exceptions=True),
|
87 |
asyncio.gather(*fda_tasks, return_exceptions=True),
|
88 |
ncbi_task,
|
89 |
+
gene_task,
|
90 |
trials_task,
|
91 |
)
|
92 |
|
93 |
+
# 4) LLM summary -------------------------------------------------
|
94 |
+
summarize_fn, _, engine = _get_llm(llm)
|
95 |
ai_summary = await summarize_fn(corpus)
|
96 |
|
97 |
+
# 5) Assemble result --------------------------------------------
|
98 |
return {
|
99 |
"papers" : papers,
|
100 |
"umls" : umls,
|
101 |
"drug_safety" : fda,
|
102 |
"ai_summary" : ai_summary,
|
103 |
+
"llm_used" : engine,
|
104 |
|
105 |
+
# genes & ontologies
|
106 |
"genes" : (ncbi_data["genes"] or []) + ([mygene] if mygene else []),
|
107 |
"mesh_defs" : ncbi_data["meshes"],
|
108 |
"gene_disease" : ncbi_data["disgenet"],
|
109 |
|
110 |
+
# trials
|
111 |
"clinical_trials": trials,
|
112 |
}
|
113 |
|
114 |
+
|
115 |
+
async def answer_ai_question(question: str, *, context: str, llm: str = _DEF_MODEL) -> Dict[str, str]:
|
116 |
+
summarize, qa_fn, engine = _get_llm(llm)
|
|
|
117 |
return {"answer": await qa_fn(question, context)}
|