Spaces:
Sleeping
Sleeping
File size: 30,487 Bytes
ce507ec 0751433 c984bb4 9826cfc 886d0b0 fe7d37a ce507ec 9c9e46a d97ac9f ce507ec a1354f4 fe7d37a ce507ec 9c9e46a fe7d37a 1c5c923 7ce8888 8e26c00 7ce8888 fe7d37a ce507ec 1c5c923 886d0b0 8e26c00 7ce8888 8e26c00 886d0b0 8e26c00 886d0b0 8e26c00 886d0b0 7ce8888 886d0b0 8e26c00 886d0b0 8e26c00 886d0b0 7ce8888 886d0b0 8e26c00 886d0b0 8e26c00 fa7abf4 d97ac9f 886d0b0 fa7abf4 ce507ec c984bb4 3c54be4 db01582 8e26c00 7ce8888 8e26c00 7ce8888 d7896b6 faf8e43 a1354f4 db01582 fa7abf4 8e26c00 fa7abf4 8e26c00 fa7abf4 8e26c00 fe7d37a 8e26c00 fe7d37a faf8e43 bc9ca80 8e26c00 70efebe bc9ca80 8e26c00 9c9e46a 8e26c00 fa7abf4 fe7d37a 8e26c00 faf8e43 fe7d37a 8e26c00 fe7d37a 8e26c00 fe7d37a 886d0b0 9c9e46a 8e26c00 9c9e46a 8e26c00 886d0b0 9c9e46a 7ce8888 886d0b0 7ce8888 886d0b0 bc9ca80 8e26c00 886d0b0 faf8e43 9c9e46a 8e26c00 9c9e46a 886d0b0 8e26c00 9c9e46a fa7abf4 d7896b6 a1354f4 d7896b6 fa7abf4 8e26c00 d7896b6 7ce8888 d7896b6 70efebe 8e26c00 70efebe 8e26c00 fa7abf4 8e26c00 7ce8888 8e26c00 7ce8888 8e26c00 7ce8888 8e26c00 7ce8888 8e26c00 70efebe 8e26c00 7ce8888 8e26c00 9826cfc a1354f4 70efebe 7ce8888 a1354f4 7ce8888 fa7abf4 d97ac9f 7ce8888 d97ac9f 8e26c00 9c9e46a d97ac9f 1c5c923 d97ac9f 7ce8888 d97ac9f 8e26c00 d7896b6 7ce8888 fa7abf4 9c9e46a fa7abf4 8e26c00 9c9e46a 8e26c00 d97ac9f 7ce8888 8e26c00 33efea0 8e26c00 6aa264c 7ce8888 db01582 0751433 7ce8888 9c9e46a 886d0b0 7ce8888 70efebe 7dbc041 fa7abf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# storyverse_weaver/app.py
import gradio as gr
import os
import time
import json
from PIL import Image, ImageDraw, ImageFont
import random
import traceback
# --- Core Logic Imports ---
from core.llm_services import initialize_text_llms, is_gemini_text_ready, is_hf_text_ready, generate_text_gemini, generate_text_hf
from core.image_services import initialize_image_llms, is_dalle_ready, is_hf_image_api_ready, generate_image_dalle, generate_image_hf_model, ImageGenResponse
from core.story_engine import Story, Scene
from prompts.narrative_prompts import get_narrative_system_prompt, format_narrative_user_prompt
from prompts.image_style_prompts import STYLE_PRESETS, COMMON_NEGATIVE_PROMPTS, format_image_generation_prompt
from core.utils import basic_text_cleanup
# --- Initialize Services ---
initialize_text_llms()
initialize_image_llms()
# --- Get API Readiness Status ---
GEMINI_TEXT_IS_READY = is_gemini_text_ready()
HF_TEXT_IS_READY = is_hf_text_ready()
DALLE_IMAGE_IS_READY = is_dalle_ready()
HF_IMAGE_IS_READY = is_hf_image_api_ready()
# --- Application Configuration (Models, Defaults) ---
TEXT_MODELS = {}
UI_DEFAULT_TEXT_MODEL_KEY = None
if GEMINI_TEXT_IS_READY:
TEXT_MODELS["β¨ Gemini 1.5 Flash (Narrate)"] = {"id": "gemini-1.5-flash-latest", "type": "gemini"}
TEXT_MODELS["Legacy Gemini 1.0 Pro (Narrate)"] = {"id": "gemini-1.0-pro-latest", "type": "gemini"}
if HF_TEXT_IS_READY: # This will be used if Gemini is not ready
TEXT_MODELS["Mistral 7B (Narrate via HF)"] = {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf_text"}
TEXT_MODELS["Gemma 2B (Narrate via HF)"] = {"id": "google/gemma-2b-it", "type": "hf_text"}
if TEXT_MODELS: # Determine default text model
if GEMINI_TEXT_IS_READY and "β¨ Gemini 1.5 Flash (Narrate)" in TEXT_MODELS:
UI_DEFAULT_TEXT_MODEL_KEY = "β¨ Gemini 1.5 Flash (Narrate)"
elif HF_TEXT_IS_READY and "Mistral 7B (Narrate via HF)" in TEXT_MODELS:
UI_DEFAULT_TEXT_MODEL_KEY = "Mistral 7B (Narrate via HF)"
elif TEXT_MODELS: # Fallback if preferred defaults are somehow not in the populated list
UI_DEFAULT_TEXT_MODEL_KEY = list(TEXT_MODELS.keys())[0]
else: # No text models configured at all
TEXT_MODELS["No Text Models Configured"] = {"id": "dummy_text_error", "type": "none"}
UI_DEFAULT_TEXT_MODEL_KEY = "No Text Models Configured"
IMAGE_PROVIDERS = {}
UI_DEFAULT_IMAGE_PROVIDER_KEY = None
if DALLE_IMAGE_IS_READY:
IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 3"] = "dalle_3"
IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 2 (Legacy)"] = "dalle_2"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "πΌοΈ OpenAI DALL-E 3"
elif HF_IMAGE_IS_READY: # Fallback to HF if DALL-E not ready
IMAGE_PROVIDERS["π‘ HF - SDXL Base"] = "hf_sdxl_base"
IMAGE_PROVIDERS["π HF - OpenJourney"] = "hf_openjourney"
IMAGE_PROVIDERS["π HF - SD v1.5"] = "hf_sd_1_5"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "π‘ HF - SDXL Base"
if not IMAGE_PROVIDERS:
IMAGE_PROVIDERS["No Image Providers Configured"] = "none"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "No Image Providers Configured"
elif not UI_DEFAULT_IMAGE_PROVIDER_KEY and IMAGE_PROVIDERS :
UI_DEFAULT_IMAGE_PROVIDER_KEY = list(IMAGE_PROVIDERS.keys())[0]
# --- Gradio UI Theme and CSS ---
omega_theme = gr.themes.Base(
font=[gr.themes.GoogleFont("Lexend Deca"), "ui-sans-serif", "system-ui", "sans-serif"],
primary_hue=gr.themes.colors.purple, secondary_hue=gr.themes.colors.pink, neutral_hue=gr.themes.colors.slate
).set(
body_background_fill="#0F0F1A", block_background_fill="#1A1A2E", block_border_width="1px",
block_border_color="#2A2A4A", block_label_background_fill="#2A2A4A", input_background_fill="#2A2A4A",
input_border_color="#4A4A6A", button_primary_background_fill="linear-gradient(135deg, #7F00FF 0%, #E100FF 100%)",
button_primary_text_color="white", button_secondary_background_fill="#4A4A6A",
button_secondary_text_color="#E0E0FF", slider_color="#A020F0"
)
omega_css = """
body, .gradio-container { background-color: #0F0F1A !important; color: #D0D0E0 !important; }
.gradio-container { max-width: 1400px !important; margin: auto !important; border-radius: 20px; box-shadow: 0 10px 30px rgba(0,0,0,0.2); padding: 25px !important; border: 1px solid #2A2A4A;}
.gr-panel, .gr-box, .gr-accordion { background-color: #1A1A2E !important; border: 1px solid #2A2A4A !important; border-radius: 12px !important; box-shadow: 0 4px 15px rgba(0,0,0,0.1);}
.gr-markdown h1 { font-size: 2.8em !important; text-align: center; color: transparent; background: linear-gradient(135deg, #A020F0 0%, #E040FB 100%); -webkit-background-clip: text; background-clip: text; margin-bottom: 5px !important; letter-spacing: -1px;}
.gr-markdown h3 { color: #C080F0 !important; text-align: center; font-weight: 400; margin-bottom: 25px !important;}
.input-section-header { font-size: 1.6em; font-weight: 600; color: #D0D0FF; margin-top: 15px; margin-bottom: 8px; border-bottom: 2px solid #7F00FF; padding-bottom: 5px;}
.output-section-header { font-size: 1.8em; font-weight: 600; color: #D0D0FF; margin-top: 15px; margin-bottom: 12px;}
.gr-input input, .gr-input textarea, .gr-dropdown select, .gr-textbox textarea { background-color: #2A2A4A !important; color: #E0E0FF !important; border: 1px solid #4A4A6A !important; border-radius: 8px !important; padding: 10px !important;}
.gr-button { border-radius: 8px !important; font-weight: 500 !important; transition: all 0.2s ease-in-out !important; display: flex; align-items: center; justify-content: center;}
.gr-button span { white-space: nowrap !important; overflow: hidden; text-overflow: ellipsis; display: inline-block; max-width: 90%; line-height: normal !important; }
.gr-button svg { width: 1.1em !important; height: 1.1em !important; margin-right: 4px !important; flex-shrink: 0;}
.gr-button-primary { padding: 10px 15px !important; } /* Adjusted padding for potentially shorter text */
.gr-button-primary:hover { transform: scale(1.03) translateY(-1px) !important; box-shadow: 0 8px 16px rgba(127,0,255,0.3) !important; }
.panel_image { border-radius: 12px !important; overflow: hidden; box-shadow: 0 6px 15px rgba(0,0,0,0.25) !important; background-color: #23233A;}
.panel_image img { max-height: 600px !important; }
.gallery_output { background-color: transparent !important; border: none !important; }
.gallery_output .thumbnail-item { border-radius: 8px !important; box-shadow: 0 3px 8px rgba(0,0,0,0.2) !important; margin: 6px !important; transition: transform 0.2s ease; height: 180px !important; width: 180px !important;}
.gallery_output .thumbnail-item:hover { transform: scale(1.05); }
.status_text { font-weight: 500; padding: 12px 18px; text-align: center; border-radius: 8px; margin-top:12px; border: 1px solid transparent; font-size: 1.05em;}
.error_text { background-color: #401010 !important; color: #FFB0B0 !important; border-color: #802020 !important; }
.success_text { background-color: #104010 !important; color: #B0FFB0 !important; border-color: #208020 !important;}
.processing_text { background-color: #102040 !important; color: #B0D0FF !important; border-color: #204080 !important;}
.important-note { background-color: rgba(127,0,255,0.1); border-left: 5px solid #7F00FF; padding: 15px; margin-bottom:20px; color: #E0E0FF; border-radius: 6px;}
.gr-tabitem { background-color: #1A1A2E !important; border-radius: 0 0 12px 12px !important; padding: 15px !important;}
.gr-tab-button.selected { background-color: #2A2A4A !important; color: white !important; border-bottom: 3px solid #A020F0 !important; border-radius: 8px 8px 0 0 !important; font-weight: 600 !important;}
.gr-tab-button { color: #A0A0C0 !important; border-radius: 8px 8px 0 0 !important;}
.gr-accordion > .gr-block { border-top: 1px solid #2A2A4A !important; }
.gr-markdown code { background-color: #2A2A4A !important; color: #C0C0E0 !important; padding: 0.2em 0.5em; border-radius: 4px; }
.gr-markdown pre { background-color: #23233A !important; padding: 1em !important; border-radius: 6px !important; border: 1px solid #2A2A4A !important;}
.gr-markdown pre > code { padding: 0 !important; background-color: transparent !important; }
#surprise_button { background: linear-gradient(135deg, #ff7e5f 0%, #feb47b 100%) !important; font-weight:600 !important;}
#surprise_button:hover { transform: scale(1.03) translateY(-1px) !important; box-shadow: 0 8px 16px rgba(255,126,95,0.3) !important; }
"""
# --- Helper: Placeholder Image Creation ---
def create_placeholder_image(text="Processing...", size=(512, 512), color="#23233A", text_color="#E0E0FF"):
img = Image.new('RGB', size, color=color); draw = ImageDraw.Draw(img)
try: font_path = "arial.ttf" if os.path.exists("arial.ttf") else None
except: font_path = None
try: font = ImageFont.truetype(font_path, 40) if font_path else ImageFont.load_default()
except IOError: font = ImageFont.load_default()
if hasattr(draw, 'textbbox'): bbox = draw.textbbox((0,0), text, font=font); tw, th = bbox[2]-bbox[0], bbox[3]-bbox[1]
else: tw, th = draw.textsize(text, font=font)
draw.text(((size[0]-tw)/2, (size[1]-th)/2), text, font=font, fill=text_color); return img
# --- StoryVerse Weaver Orchestrator ---
def add_scene_to_story_orchestrator(
current_story_obj: Story, scene_prompt_text: str, image_style_dropdown: str, artist_style_text: str,
negative_prompt_text: str, text_model_key: str, image_provider_key: str,
narrative_length: str, image_quality: str,
progress=gr.Progress(track_tqdm=True)
):
start_time = time.time()
if not current_story_obj: current_story_obj = Story()
log_accumulator = [f"**π Scene {current_story_obj.current_scene_number + 1} - {time.strftime('%H:%M:%S')}**"]
ret_story_state = current_story_obj
# Initialize gallery with placeholders or current items to avoid errors if generation fails early
initial_gallery_items = current_story_obj.get_all_scenes_for_gallery_display()
if not initial_gallery_items: # Handle case where story is new and has no scenes
placeholder_img = create_placeholder_image("Waiting for first scene...", size=(180,180), color="#1A1A2E")
initial_gallery_items = [(placeholder_img, "Your StoryVerse awaits!")]
ret_gallery = initial_gallery_items
ret_latest_image = None
ret_latest_narrative_md_obj = gr.Markdown(value="## Processing...\nNarrative being woven...")
ret_status_bar_html_obj = gr.HTML(value="<p class='processing_text status_text'>Processing...</p>")
# ret_log_md will be built up
# Initial yield for UI updates (buttons disabled by .then() chain)
yield {
output_status_bar: gr.HTML(value=f"<p class='processing_text status_text'>π Weaving Scene {current_story_obj.current_scene_number + 1}...</p>"),
output_latest_scene_image: gr.Image(value=create_placeholder_image("π¨ Conjuring visuals...")),
output_latest_scene_narrative: gr.Markdown(value=" Musing narrative..."),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator))
}
try:
if not scene_prompt_text.strip():
raise ValueError("Scene prompt cannot be empty!")
# --- 1. Generate Narrative Text ---
progress(0.1, desc="βοΈ Crafting narrative...")
narrative_text_generated = f"Narrative Error: Init failed."
text_model_info = TEXT_MODELS.get(text_model_key)
if text_model_info and text_model_info["type"] != "none":
system_p = get_narrative_system_prompt("default")
prev_narrative = current_story_obj.get_last_scene_narrative()
user_p = format_narrative_user_prompt(scene_prompt_text, prev_narrative)
log_accumulator.append(f" Narrative: Using {text_model_key} ({text_model_info['id']}). Length: {narrative_length}")
text_response = None
if text_model_info["type"] == "gemini": text_response = generate_text_gemini(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
elif text_model_info["type"] == "hf_text": text_response = generate_text_hf(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
if text_response and text_response.success: narrative_text_generated = basic_text_cleanup(text_response.text); log_accumulator.append(f" Narrative: Success.")
elif text_response: narrative_text_generated = f"**Narrative Error ({text_model_key}):** {text_response.error}"; log_accumulator.append(f" Narrative: FAILED - {text_response.error}")
else: log_accumulator.append(f" Narrative: FAILED - No response from {text_model_key}.")
else: narrative_text_generated = "**Narrative Error:** Selected text model not available or misconfigured."; log_accumulator.append(f" Narrative: FAILED - Model '{text_model_key}' unavailable.")
ret_latest_narrative_str_content = f"## Scene Idea: {scene_prompt_text}\n\n{narrative_text_generated}"
ret_latest_narrative_md_obj = gr.Markdown(value=ret_latest_narrative_str_content)
yield { output_latest_scene_narrative: ret_latest_narrative_md_obj,
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 2. Generate Image ---
progress(0.5, desc="π¨ Conjuring visuals...")
image_generated_pil = None
image_generation_error_message = None
selected_image_provider_key_from_ui = image_provider_key
selected_image_provider_type = IMAGE_PROVIDERS.get(selected_image_provider_key_from_ui)
image_content_prompt_for_gen = narrative_text_generated if narrative_text_generated and "Error" not in narrative_text_generated else scene_prompt_text
quality_keyword = "ultra detailed, intricate, masterpiece, " if image_quality == "High Detail" else ("concept sketch, line art, " if image_quality == "Sketch Concept" else "")
full_image_prompt = format_image_generation_prompt(quality_keyword + image_content_prompt_for_gen[:350], image_style_dropdown, artist_style_text)
log_accumulator.append(f" Image: Attempting with provider key '{selected_image_provider_key_from_ui}' (maps to type '{selected_image_provider_type}'). Style: {image_style_dropdown}.")
if selected_image_provider_type and selected_image_provider_type != "none":
image_response = None
if selected_image_provider_type.startswith("dalle_"):
if DALLE_IMAGE_IS_READY:
dalle_model_version = "dall-e-3" if selected_image_provider_type == "dalle_3" else "dall-e-2"
dalle_size = "1024x1024"
dalle_quality_param = "hd" if image_quality=="High Detail" and dalle_model_version == "dall-e-3" else "standard"
image_response = generate_image_dalle(full_image_prompt, model=dalle_model_version, size=dalle_size, quality=dalle_quality_param)
else: image_generation_error_message = "**Image Error:** DALL-E selected but API not ready."
elif selected_image_provider_type.startswith("hf_"):
if HF_IMAGE_IS_READY:
hf_model_id_to_call = "stabilityai/stable-diffusion-xl-base-1.0"; img_width, img_height = 768, 768 # Defaults
if selected_image_provider_type == "hf_openjourney": hf_model_id_to_call = "prompthero/openjourney"; img_width,img_height = 512,512
elif selected_image_provider_type == "hf_sdxl_base": hf_model_id_to_call = "stabilityai/stable-diffusion-xl-base-1.0"; # Redundant, but explicit
elif selected_image_provider_type == "hf_sd_1_5": hf_model_id_to_call = "runwayml/stable-diffusion-v1-5"; img_width,img_height = 512,512
image_response = generate_image_hf_model(full_image_prompt, model_id=hf_model_id_to_call, negative_prompt=negative_prompt_text or COMMON_NEGATIVE_PROMPTS, width=img_width, height=img_height)
else: image_generation_error_message = "**Image Error:** HF Image Model selected but API not ready."
else: image_generation_error_message = f"**Image Error:** Provider type '{selected_image_provider_type}' not handled."
if image_response and image_response.success: image_generated_pil = image_response.image; log_accumulator.append(f" Image: Success from {image_response.provider} (Model: {image_response.model_id_used}).")
elif image_response: image_generation_error_message = f"**Image Error ({image_response.provider} - {image_response.model_id_used}):** {image_response.error}"; log_accumulator.append(f" Image: FAILED - {image_response.error}")
elif not image_generation_error_message: image_generation_error_message = f"**Image Error:** No response with {image_provider_key}."
if not image_generated_pil and not image_generation_error_message:
image_generation_error_message = "**Image Error:** No valid image provider configured or selected."
log_accumulator.append(f" Image: FAILED - {image_generation_error_message}")
ret_latest_image = image_generated_pil if image_generated_pil else create_placeholder_image("Image Gen Failed", color="#401010")
yield { output_latest_scene_image: gr.Image(value=ret_latest_image),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 3. Add Scene to Story Object ---
final_scene_error = None
if image_generation_error_message and "**Narrative Error**" in narrative_text_generated : final_scene_error = f"{narrative_text_generated}\n{image_generation_error_message}"
elif "**Narrative Error**" in narrative_text_generated: final_scene_error = narrative_text_generated
elif image_generation_error_message: final_scene_error = image_generation_error_message
current_story_obj.add_scene_from_elements(
user_prompt=scene_prompt_text,
narrative_text=narrative_text_generated if "**Narrative Error**" not in narrative_text_generated else "(Narrative gen failed)",
image=image_generated_pil,
image_style_prompt=f"{image_style_dropdown}{f', by {artist_style_text}' if artist_style_text and artist_style_text.strip() else ''}",
image_provider=selected_image_provider_key_from_ui,
error_message=final_scene_error
)
ret_story_state = current_story_obj
log_accumulator.append(f" Scene {current_story_obj.current_scene_number} processed and added.")
# --- 4. Prepare Final Values for Return Tuple ---
ret_gallery = current_story_obj.get_all_scenes_for_gallery_display()
# Ensure gallery items are PIL Images or None for errored/missing images
processed_gallery_tuples = []
for img_item, cap_text in ret_gallery:
if isinstance(img_item, Image.Image):
processed_gallery_tuples.append((img_item, cap_text))
else: # Assume it's an error or no image, create placeholder for gallery
gallery_placeholder = create_placeholder_image(f"S{cap_text.split(':')[0][1:]}\nError/NoImg", size=(180,180), color="#2A2A4A")
processed_gallery_tuples.append((gallery_placeholder, cap_text))
ret_gallery = processed_gallery_tuples
_ , latest_narr_for_display_final_str_temp = current_story_obj.get_latest_scene_details_for_display()
ret_latest_narrative_md_obj = gr.Markdown(value=latest_narr_for_display_final_str_temp)
status_html_str_temp = f"<p class='error_text status_text'>Scene {current_story_obj.current_scene_number} added with errors.</p>" if final_scene_error else f"<p class='success_text status_text'>π Scene {current_story_obj.current_scene_number} woven!</p>"
ret_status_bar_html_obj = gr.HTML(value=status_html_str_temp)
progress(1.0, desc="Scene Complete!")
except ValueError as ve:
log_accumulator.append(f"\n**INPUT/CONFIG ERROR:** {ve}")
ret_status_bar_html_obj = gr.HTML(value=f"<p class='error_text status_text'>β CONFIGURATION ERROR: {ve}</p>")
ret_latest_narrative_md_obj = gr.Markdown(value=f"## Error\n{ve}")
except Exception as e:
log_accumulator.append(f"\n**UNEXPECTED RUNTIME ERROR:** {type(e).__name__} - {e}\n{traceback.format_exc()}")
ret_status_bar_html_obj = gr.HTML(value=f"<p class='error_text status_text'>β UNEXPECTED ERROR: {type(e).__name__}. Check logs.</p>")
ret_latest_narrative_md_obj = gr.Markdown(value=f"## Unexpected Error\n{type(e).__name__}: {e}\nSee log for details.")
current_total_time = time.time() - start_time
log_accumulator.append(f" Cycle ended at {time.strftime('%H:%M:%S')}. Total time: {current_total_time:.2f}s")
ret_log_md = gr.Markdown(value="\n".join(log_accumulator))
# This is the FINAL return. It must be a tuple matching the `outputs` list of engage_button.click()
return (
ret_story_state, ret_gallery, ret_latest_image,
ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md
)
def clear_story_state_ui_wrapper():
new_story = Story(); ph_img = create_placeholder_image("Blank canvas...", color="#1A1A2E", text_color="#A0A0C0")
# Ensure gallery output for clear is also a list of (image, caption)
cleared_gallery_display = [(ph_img, "Your StoryVerse is new and untold...")]
initial_narrative = "## β¨ New Story β¨\nDescribe your first scene!"
status_msg = "<p class='processing_text status_text'>π Story Cleared.</p>"
return (new_story, cleared_gallery_display, None, gr.Markdown(initial_narrative), gr.HTML(status_msg), "Log Cleared.", "")
def surprise_me_func():
print("DEBUG: surprise_me_func called") # For checking button functionality
themes = ["Cosmic Horror", "Solarpunk Utopia", "Mythic Fantasy", "Noir Detective"]; actions = ["unearths an artifact", "negotiates"]; settings = ["on a rogue planet", "in a city in a tree"]; prompt = f"A protagonist {random.choice(actions)} {random.choice(settings)}. Theme: {random.choice(themes)}."; style = random.choice(list(STYLE_PRESETS.keys())); artist = random.choice(["H.R. Giger", "Moebius", ""]*2)
print(f"DEBUG: surprise_me_func returning: {prompt}, {style}, {artist}")
return prompt, style, artist
def disable_buttons_for_processing():
print("DEBUG: Disabling buttons")
return gr.Button(interactive=False), gr.Button(interactive=False)
def enable_buttons_after_processing():
print("DEBUG: Enabling buttons")
return gr.Button(interactive=True), gr.Button(interactive=True)
# --- Gradio UI Definition ---
with gr.Blocks(theme=omega_theme, css=omega_css, title="β¨ StoryVerse Omega β¨") as story_weaver_demo:
# Define Python variables for UI components
story_state_output = gr.State(Story())
with gr.Row(equal_height=False, variant="panel"): # Main layout row
# Input Column
with gr.Column(scale=7, min_width=450):
gr.Markdown("### π‘ **Craft Your Scene**", elem_classes="input-section-header")
with gr.Group(): scene_prompt_input = gr.Textbox(lines=7, label="Scene Vision (Description, Dialogue, Action):", placeholder="e.g., Amidst swirling cosmic dust...")
with gr.Row(elem_classes=["compact-row"]):
with gr.Column(scale=2): image_style_input = gr.Dropdown(choices=["Default (Cinematic Realism)"] + sorted(list(STYLE_PRESETS.keys())), value="Default (Cinematic Realism)", label="Visual Style", allow_custom_value=True)
with gr.Column(scale=2): artist_style_input = gr.Textbox(label="Artistic Inspiration (Optional):", placeholder="e.g., Moebius...")
negative_prompt_input = gr.Textbox(lines=2, label="Exclude from Image:", value=COMMON_NEGATIVE_PROMPTS)
with gr.Accordion("βοΈ Advanced AI Configuration", open=False):
with gr.Group():
text_model_dropdown = gr.Dropdown(choices=list(TEXT_MODELS.keys()), value=UI_DEFAULT_TEXT_MODEL_KEY, label="Narrative AI Engine")
image_provider_dropdown = gr.Dropdown(choices=list(IMAGE_PROVIDERS.keys()), value=UI_DEFAULT_IMAGE_PROVIDER_KEY, label="Visual AI Engine")
with gr.Row():
narrative_length_dropdown = gr.Dropdown(["Short (1 paragraph)", "Medium (2-3 paragraphs)", "Detailed (4+ paragraphs)"], value="Medium (2-3 paragraphs)", label="Narrative Detail")
image_quality_dropdown = gr.Dropdown(["Standard", "High Detail", "Sketch Concept"], value="Standard", label="Image Detail/Style")
with gr.Row(elem_classes=["compact-row"], equal_height=True):
engage_button = gr.Button("π Weave!", variant="primary", scale=3, icon="β¨") # Shorter text
surprise_button = gr.Button("π² Surprise!", variant="secondary", scale=1, icon="π")# Shorter text
clear_story_button = gr.Button("ποΈ New", variant="stop", scale=1, icon="β»οΈ") # Shorter text
output_status_bar = gr.HTML(value="<p class='processing_text status_text'>Ready to weave your first masterpiece!</p>")
# Output Column
with gr.Column(scale=10, min_width=700):
gr.Markdown("### πΌοΈ **Your StoryVerse**", elem_classes="output-section-header")
with gr.Tabs():
with gr.TabItem("π Latest Scene"):
output_latest_scene_image = gr.Image(label="Latest Image", type="pil", interactive=False, height=512, show_label=False, show_download_button=True, elem_classes=["panel_image"])
output_latest_scene_narrative = gr.Markdown()
with gr.TabItem("π Story Scroll"):
output_gallery = gr.Gallery(label="Story Scroll", show_label=False, columns=4, object_fit="cover", height=700, preview=True, allow_preview=True, elem_classes=["gallery_output"])
with gr.TabItem("βοΈ Log"):
with gr.Accordion("Interaction Log", open=False):
output_interaction_log_markdown = gr.Markdown("Log...")
# API Status (defined after main layout to ensure it's below everything)
with gr.Accordion("π§ AI Services Status & Info", open=False, elem_id="api_status_accordion"):
status_text_list = []; text_llm_ok = (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY); image_gen_ok = (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY)
if not text_llm_ok and not image_gen_ok: status_text_list.append("<p style='color:#FCA5A5;font-weight:bold;'>β οΈ CRITICAL: NO AI SERVICES CONFIGURED.</p>")
else:
if text_llm_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Text Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Text Generation NOT Ready.</p>")
if image_gen_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Image Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Image Generation NOT Ready.</p>")
gr.HTML("".join(status_text_list))
# Examples (defined after main layout)
gr.Examples(
examples=[
["A lone, weary traveler on a mechanical steed crosses a vast, crimson desert under twin suns. Dust devils dance in the distance.", "Sci-Fi Western", "Moebius", "greenery, water, modern city"],
["Deep within an ancient, bioluminescent forest, a hidden civilization of sentient fungi perform a mystical ritual around a pulsating crystal.", "Psychedelic Fantasy", "Alex Grey", "technology, buildings, roads"],
["A child sits on a crescent moon, fishing for stars in a swirling nebula. A friendly space whale swims nearby.", "Whimsical Cosmic", "James Jean", "realistic, dark, scary"],
["A grand, baroque library where the books fly freely and whisper forgotten lore to those who listen closely.", "Magical Realism", "Remedios Varo", "minimalist, simple, technology"]
],
inputs=[scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input],
label="π Example Universes to Weave π",
)
gr.HTML("<div style='text-align:center; margin-top:30px; padding-bottom:20px;'><p style='font-size:0.9em; color:#8080A0;'>β¨ StoryVerse Omegaβ’ - Weaving Worlds with Words and Pixels β¨</p></div>")
# Event Handlers
engage_event_actions = engage_button.click(fn=disable_buttons_for_processing, outputs=[engage_button, surprise_button], queue=False)\
.then(fn=add_scene_to_story_orchestrator,
inputs=[story_state_output, scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input, text_model_dropdown, image_provider_dropdown, narrative_length_dropdown, image_quality_dropdown],
outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown])\
.then(fn=enable_buttons_after_processing, outputs=[engage_button, surprise_button], queue=False)
clear_story_button.click(fn=clear_story_state_ui_wrapper,
outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown, scene_prompt_input])
surprise_button.click(fn=surprise_me_func,
outputs=[scene_prompt_input, image_style_input, artist_style_input])
# --- Entry Point ---
if __name__ == "__main__":
print("="*80); print("β¨ StoryVerse Omega (Full App with Fixes) Launching... β¨")
print(f" Gemini Text Ready: {GEMINI_TEXT_IS_READY}"); print(f" HF Text Ready: {HF_TEXT_IS_READY}")
print(f" DALL-E Image Ready: {DALLE_IMAGE_IS_READY}"); print(f" HF Image API Ready: {HF_IMAGE_IS_READY}")
if not (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY) or not (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY): print(" π΄ WARNING: Not all services configured.")
print(f" Default Text Model: {UI_DEFAULT_TEXT_MODEL_KEY}"); print(f" Default Image Provider: {UI_DEFAULT_IMAGE_PROVIDER_KEY}")
print("="*80)
story_weaver_demo.launch(debug=True, server_name="0.0.0.0", share=False) |