Spaces:
Sleeping
Sleeping
File size: 41,628 Bytes
ce507ec 0751433 c984bb4 9826cfc 886d0b0 fe7d37a ce507ec 886d0b0 9c9e46a d97ac9f ce507ec a1354f4 fe7d37a ce507ec 9c9e46a fe7d37a 1c5c923 886d0b0 fe7d37a ce507ec 1c5c923 886d0b0 fe7d37a bc9ca80 886d0b0 fe7d37a 9c9e46a 886d0b0 1c5c923 886d0b0 9c9e46a 9826cfc 886d0b0 9c9e46a 70efebe fe7d37a 886d0b0 9c9e46a 886d0b0 9c9e46a fe7d37a 9c9e46a fa7abf4 d97ac9f 886d0b0 fa7abf4 ce507ec c984bb4 3c54be4 db01582 886d0b0 9c9e46a d7896b6 886d0b0 d7896b6 faf8e43 a1354f4 db01582 fa7abf4 9c9e46a fa7abf4 886d0b0 fa7abf4 886d0b0 9c9e46a fe7d37a 9c9e46a 886d0b0 fe7d37a faf8e43 bc9ca80 9c9e46a 70efebe bc9ca80 9c9e46a fa7abf4 9c9e46a 886d0b0 fa7abf4 fe7d37a 886d0b0 faf8e43 fe7d37a 886d0b0 fe7d37a 886d0b0 fe7d37a 886d0b0 9c9e46a 886d0b0 9c9e46a 886d0b0 9c9e46a 886d0b0 9c9e46a 886d0b0 9c9e46a 886d0b0 bc9ca80 886d0b0 faf8e43 9c9e46a 886d0b0 9c9e46a fa7abf4 d7896b6 a1354f4 d7896b6 fa7abf4 9c9e46a d7896b6 70efebe 9c9e46a 70efebe fa7abf4 9c9e46a 886d0b0 9c9e46a 70efebe 9826cfc a1354f4 70efebe a1354f4 886d0b0 9c9e46a 886d0b0 fe7d37a 9c9e46a fe7d37a 9c9e46a fe7d37a 9c9e46a fe7d37a d97ac9f fa7abf4 d97ac9f 9c9e46a d97ac9f 9c9e46a d97ac9f 1c5c923 d97ac9f 886d0b0 d97ac9f 9c9e46a d7896b6 886d0b0 9c9e46a fa7abf4 9c9e46a fa7abf4 9c9e46a d97ac9f 9c9e46a 6aa264c db01582 0751433 9c9e46a 886d0b0 9c9e46a 70efebe 7dbc041 fa7abf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
# storyverse_weaver/app.py
import gradio as gr
import os
import time
import json
from PIL import Image, ImageDraw, ImageFont
import random
import traceback
# --- Core Logic Imports ---
from core.llm_services import initialize_text_llms, is_gemini_text_ready, is_hf_text_ready, generate_text_gemini, generate_text_hf
# MODIFIED Import for image_services to reflect DALL-E priority
from core.image_services import initialize_image_llms, is_dalle_ready, is_hf_image_api_ready, generate_image_dalle, generate_image_hf_model, ImageGenResponse
from core.story_engine import Story, Scene
from prompts.narrative_prompts import get_narrative_system_prompt, format_narrative_user_prompt
from prompts.image_style_prompts import STYLE_PRESETS, COMMON_NEGATIVE_PROMPTS, format_image_generation_prompt
from core.utils import basic_text_cleanup
# --- Initialize Services ---
initialize_text_llms()
initialize_image_llms()
# --- Get API Readiness Status ---
GEMINI_TEXT_IS_READY = is_gemini_text_ready()
HF_TEXT_IS_READY = is_hf_text_ready()
DALLE_IMAGE_IS_READY = is_dalle_ready() # For DALL-E
HF_IMAGE_IS_READY = is_hf_image_api_ready() # For HF Image fallback
# --- Application Configuration (Models, Defaults) ---
TEXT_MODELS = {}
UI_DEFAULT_TEXT_MODEL_KEY = None
# ... (TEXT_MODELS and UI_DEFAULT_TEXT_MODEL_KEY population as before,Great prioritizing Gemini then HF) ...
if GEMINI_TEXT_IS_READY:
TEXT_MODELS["β¨ Gemini! Now that `core/image_services.py` is updated to prioritize D 1.5 Flash (Narrate)"] = {"id": "gemini-1.5-flash-latest", "type": "gemini"}
TEXT_MODELS["Legacy Gemini 1.0 Pro (ALL-E and use Hugging Face models as a fallback, we need to ensure `app.py` correctly reflects these changes inNarrate)"] = {"id": "gemini-1.0-pro-latest", "type": "gemini"}
if HF_TEXT_IS_READY:
TEXT_MODELS["Mistral 7 its configuration and logic.
Here's the **full `app.py`** rewritten to align with the updated `image_services.py`.
**Key changes in this `app.py`:**
1. **APIB (Narrate via HF)"] = {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf_text"}
TEXT_MODELS["Gemma 2B (Narrate via HF)"] = {"id": "google/gemma-2b-it", Readiness Checks:** Imports and uses `is_dalle_ready()` and `is_hf_image_api_ready()` from `image_services.py`.
2. **`IMAGE_PROVIDERS` Configuration:** Prioritizes DALL-E options if `DALLE_IMAGE_IS_READY` is true, then falls back to HF image models "type": "hf_text"}
if TEXT_MODELS:
if GEMINI_TEXT_IS_READY and "β¨ Gemini 1.5 Flash (Narrate)" in TEXT_MODELS: UI_DEFAULT_TEXT_MODEL_KEY = "β¨ Gemini 1.5 Flash (Narrate)"
elif HF_TEXT_IS_READY and "Mistral 7B (Narrate via HF)" in TEXT_MODELS: UI_DEFAULT_TEXT_MODEL_KEY = "Mistral 7B (Narrate via HF)"
else: UI if `HF_IMAGE_IS_READY` is true.
3. **Orchestrator Logic (`add_scene_to_story_orchestrator`):**
* Correctly identifies the selected image provider type (DALL-E or specific HF model).
* Calls `generate_image_dalle()`_DEFAULT_TEXT_MODEL_KEY = list(TEXT_MODELS.keys())[0]
else:
TEXT_MODELS["No Text Models Configured"] = {"id": "dummy_text_error", or `generate_image_hf_model()` accordingly.
4. **UI Labels and Info:** Updated to reflect the DALL-E and HF image options.
```python
# storyverse_weaver/app.py
import "type": "none"}
UI_DEFAULT_TEXT_MODEL_KEY = "No Text Models Configured"
IMAGE_PROVIDERS = {} # Reset and rebuild
UI_DEFAULT_IMAGE_PROVIDER_KEY = None
if DALLE_IMAGE_IS_READY: # Prioritize DALL-E
IMAGE_PROVIDERS["πΌοΈ OpenAI gradio as gr
import os
import time
import json
from PIL import Image, ImageDraw, ImageFont
import random
import traceback
# --- Core Logic Imports ---
from core.llm_services import initialize_text_llms, is_gemini_text_ready, is_hf_text_ready, generate_text_gemini, generate_text_hf
# Updated import from image_services
from core.image DALL-E 3"] = "dalle_3"
IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 2 (Legacy)"] = "dalle_2"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "πΌοΈ OpenAI DALL-E 3"
elif HF_IMAGE_IS_READY: # Fallback to HF if DALL-E not ready
IMAGE_PROVIDERS["π‘ HF - Stable Diffusion XL Base (Fallback)"] = "hf_sdxl_base"
IMAGE_PROVIDERS["π HF - Open_services import initialize_image_llms, is_dalle_ready, is_hf_image_api_ready, generate_image_dalle, generate_image_hf_model, ImageGenResponse
from core.story_engine import Story, Scene
from prompts.narrative_prompts import get_narrative_system_prompt, format_narrative_user_prompt
from prompts.image_style_prompts import STYLE_PRESETS, COMMON_NEGATIVE_PROMPTS, format_image_generation_prompt
from core.utils import basic_text_cleanup
# --- Initialize Services ---
initialize_text_llms()
initialize_imageJourney (Fallback)"] = "hf_openjourney"
IMAGE_PROVIDERS["π HF - Stable Diffusion v1.5 (Fallback)"] = "hf_sd_1_5"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "π‘ HF - Stable Diffusion XL Base (Fallback)"
if not IMAGE_PROVIDERS: # If neither is ready
IMAGE_PROVIDERS["No Image Providers Configured"] = "none"
_llms()
# --- Get API Readiness Status ---
GEMINI_TEXT_IS_READY = is_gemini_text_ready()
HF_TEXT_IS_READY = is_hf_text_ready()
DALLE_IMAGE_IS_READY = is_dalle_ready() # For DALL-E
HF_IMAGE_IS_READY = is_hf_image_api_ready() # For HF image models
# --- Application Configuration (Models, Defaults) ---
TEXT_MODELS = {}
UI_DEFAULT_TEXTUI_DEFAULT_IMAGE_PROVIDER_KEY = "No Image Providers Configured"
elif not UI_DEFAULT_IMAGE_PROVIDER_KEY and IMAGE_PROVIDERS : # Should not happen if logic above is correct
UI_DEFAULT_IMAGE_PROVIDER_KEY = list(IMAGE_PROVIDERS.keys())[0]
# --- Gradio UI Theme and CSS ---
# (omega_theme and omega_css definitions remain THE SAME as the last full app.py version)
omega_theme = gr.themes.Base(font=[gr.themes.GoogleFont("Lexend Deca_MODEL_KEY = None
# ... (TEXT_MODELS and UI_DEFAULT_TEXT_MODEL_KEY population logic remains the same as previous full app.py)
if GEMINI_TEXT_IS_READY:
TEXT_MODELS["β¨ Gemini 1.5 Flash (Narrate)"] = {"id": "gemini-1.5-flash-latest", "type": "gemini"}
TEXT_MODELS["Legacy Gemini 1.0 Pro (Narrate)"] = {"id": "gemini-1.0-pro-latest", "type": "gemini"}
if HF_TEXT_IS_READY:
TEXT_MODELS["Mistral 7B (Narrate via HF)"] = {"id": "mistralai/Mistral-7")], primary_hue=gr.themes.colors.purple).set(body_background_fill="#0F0F1A", block_background_fill="#1A1A2E", slider_color="#A020F0")
omega_css = "body, .gradio-container { background-color: #0F0F1A !important; color: #D0D0E0 !important; } /* Paste your full omega_css here */"
# --- Helper: Placeholder Image Creation ---
def create_placeholder_image(text="Processing...", size=(512, 512), color="#23233A", text_color="#E0E0FF"):
# ... (Full implementation as before)
img = Image.new('RGB', size,B-Instruct-v0.2", "type": "hf_text"}
TEXT_MODELS["Gemma 2B (Narrate via HF)"] = {"id": "google/gemma-2b-it", "type": "hf_text"}
if TEXT_MODELS:
if GEMINI_TEXT_IS_READY and "β¨ Gemini 1.5 Flash (Narrate)" in TEXT_MODELS: UI_DEFAULT_TEXT_MODEL_KEY = "β¨ Gemini 1.5 Flash (Narrate)"
elif HF_TEXT_IS_READY and "Mistral 7B (Narrate via HF)" in TEXT_MODELS: UI_DEFAULT_TEXT_MODEL_KEY = "Mistral 7B (Narrate via HF)"
else: UI_DEFAULT_TEXT_MODEL_KEY = list(TEXT_MODELS.keys())[0 color=color); draw = ImageDraw.Draw(img)
try: font_path = "arial.ttf" if os.path.exists("arial.ttf") else None
except: font_path = None
try: font = ImageFont.truetype(font_path, 40) if font_path else ImageFont.load_default()
except IOError: font = ImageFont.load_default()
if hasattr(draw, 'textbbox'): bbox = draw.textbbox((0,0), text, font=font); tw, th = bbox[2]-bbox[0], bbox[3]-bbox[1]
else: tw, th = draw.textsize(text, font=font)
draw.text(((size[0]-tw)/2, (size[1]-th)/2), text, font=font, fill=text_color); return img
# --- StoryVerse Weaver Orchestrator (MODIFIED image generation part) ---
def add_scene_to_story_orchestrator(
current_story_obj: Story, scene_prompt_text: str, image_style_dropdown: str, artist_style_text: str,
negative_]
else:
TEXT_MODELS["No Text Models Configured"] = {"id": "dummy_text_error", "type": "none"}
UI_DEFAULT_TEXT_MODEL_KEY = "No Text Models Configured"
IMAGE_PROVIDERS = {} # Rebuild this based on new priorities
UI_DEFAULT_IMAGE_PROVIDER_KEY = None
if DALLE_IMAGE_IS_READY:
IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 3"] = "dalle_3" # This key will map to model="dall-e-3"
IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 2 (Legacy)"] = "dalle_2"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "πΌοΈ OpenAI DALL-E 3"
if HF_IMAGE_IS_READY:
IMAGE_PROVIDERS["π‘ HF - Stable Diffusion XL Base"] = "hf_sdxl_base"
IMAGE_PROVIDERS["π HF - OpenJourney (Midjourney-like)"] = "hf_openjourney"
IMAGE_PROVIDERSprompt_text: str, text_model_key: str, image_provider_key: str,
narrative_length: str, image_quality: str,
progress=gr.Progress(track_tqdm=True)
):
start_time = time.time()
if not current_story_obj: current_story_obj = Story()
log_accumulator = [f"**π Scene {current_story_obj.current_scene_number + 1} - {time.strftime('%H:%M:%S')}**"]
# ... (Initialize ret_... placeholders as before) ...
ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md = \
current_story_obj, current_story_obj.get_all_scenes_for_gallery_display(), None, gr.Markdown("Processing..."), gr.HTML("<p>Processing...</p>"), gr.Markdown("\n".join(log_accumulator))
# Initial yield (buttons handled by .then() chain)
yield {
output_status_bar: gr.HTML(["π HF - Stable Diffusion v1.5"] = "hf_sd_1_5"
if not UI_DEFAULT_IMAGE_PROVIDER_KEY: # If DALL-E wasn't ready, default to HF
UI_DEFAULT_IMAGE_PROVIDER_KEY = "π‘ HF - Stable Diffusion XL Base"
if not IMAGE_PROVIDERS: # If neither DALL-E nor HF images are ready
IMAGE_PROVIDERS["No Image Providers Configured"] = "none"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "No Image Providers Configured"
# --- Gradio UI Theme and CSS ---
# (omega_theme and omega_css definitions remain the same as the last full app.py)
omega_theme = gr.themes.Base(font=[gr.themes.GoogleFont("Lexend Deca")], primary_hue=gr.themes.colors.purple).set(body_background_fill="#0F0F1A", block_background_fill="#1A1A2E", slider_color="#A020F0")
omega_css = """ /* ... Paste your full omega_css string here ... */ """
# --- Helper: Placeholder Image Creation ---
def create_placeholder_image(text="Processing...", size=(512, 512), color="#23233A", text_color="#value=f"<p class='processing_text status_text'>π Weaving Scene {current_story_obj.current_scene_number + 1}...</p>"),
output_latest_scene_image: gr.Image(value=create_placeholder_image("π¨ Conjuring visuals...")),
output_latest_scene_narrative: gr.Markdown(value=" Musing narrative..."),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator))
}
try:
if not scene_prompt_text.strip(): raise ValueError("Scene prompt cannot be empty!")
# --- 1. Generate Narrative Text (No change here, uses Gemini or HF) ---
progress(0.1, desc="βοΈ Crafting narrative...")
# ... (Full narrative generation logic - PASTE FROM PREVIOUS WORKING VERSION) ...
# Example:
narrative_text_generated = "Simulated Narrative: " + scene_prompt_text[:30] # Placeholder
text_model_info = TEXT_MODELS.get(text_model_key) # Get full model info
if text_model_info and text_model_info["type"] != "none":
# ... call generate_text_gemini or generate_text_hf ...
log_accumulator.append(f" Narrative: Using {text_model_key} (simulated).")
else:
narrative_text_generated = "**Narrative Error:** Text model not available."
E0E0FF"):
# ... (Full implementation as before) ...
img = Image.new('RGB', size, color=color); draw = ImageDraw.Draw(img); #... (full implementation)
try: font_path = "arial.ttf" if os.path.exists("arial.ttf") else None
except: font_path = None
try: font = ImageFont.truetype(font_path, 40) if font_path else ImageFont.load_default()
except IOError: font = ImageFont.load_default()
if hasattr(draw, 'textbbox'): bbox = draw.textbbox((0,0), text, font=font); tw, th = bbox[2]-bbox[0], bbox[3]-bbox[1]
else: tw, th = draw.textsize(text, font=font)
draw.text(((size[0]-tw)/2, (size[1]-th)/2), text, font=font, fill=text_color); return img
# --- StoryVerse Weaver Orchestrator (MODIFIED image generation part) ---
def add_scene_to_story_orchestrator(
current_story_obj: Story, scene_prompt_text: str, image_style_dropdown: str, artist_style_text: str,
negative_prompt_text: str, text_model_key: str, image_provider_key: str,
narrative_length: str, image_quality: str,
progress=gr.Progress(track_tqdm=True)
):
start_time = time.time()
if not current_story_obj: current_story_obj = Story()
log_accumulator = [f"**π Scene {current_story_obj.current_scene_number + 1} - {log_accumulator.append(f" Narrative: FAILED - Model '{text_model_key}' not available.")
ret_latest_narrative_str_content = f"## Scene Idea: {scene_prompt_text}\n\n{narrative_text_generated}"
ret_latest_narrative_md_obj = gr.Markdown(value=ret_latest_narrative_str_content)
yield { output_latest_scene_narrative: ret_latest_narrative_md_obj,
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 2. Generate Image (NOW PRIORITIZING DALL-E, THEN HF) ---
progress(0.5, desc="π¨ Conjuring visuals...")
image_generated_pil = None
image_generation_error_message = None
selected_image_provider_actual_type = IMAGE_PROVIDERS.get(image_provider_key) # e.g., "dalle_3", "hf_sdxl_base"
image_content_prompt_for_gen = narrative_text_generated if narrative_text_generated and "Error" not in narrative_text_generated else scene_prompt_text
quality_keyword = "detailed, high quality, cinematic lighting, " if image_quality == "High Detail" else ""
full_image_prompt = format_image_generation_prompt(quality_keyword + image_content_prompt_for_gen[:350], image_style_dropdown, artist_style_text)
log_accumulator.append(f" Image: Attempting with provider key '{image_provider_key}' (maps to type '{selected_image_provider_actual_type}'). Style: {image_style_dropdown}.")
if selected_image_provider_actual_type and selected_image_provider_actualtime.strftime('%H:%M:%S')}**"]
# ... (Initialize ret_... placeholders as before) ...
ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md = \
current_story_obj, current_story_obj.get_all_scenes_for_gallery_display(), None, gr.Markdown("Processing..."), gr.HTML("<p>Processing...</p>"), gr.Markdown("\n".join(log_accumulator))
# Initial yield for UI updates (buttons handled by .then() chain)
yield {
output_status_bar: gr.HTML(value=f"<p class='processing_text status_text'>π Weaving Scene {current_story_obj.current_scene_number + 1}...</p>"),
output_latest_scene_image: gr.Image(value=create_placeholder_image("π¨ Conjuring visuals...")),
output_latest_scene_narrative: gr.Markdown(value=" Musing narrative..."),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator))
}
try:
if not scene_prompt_text.strip(): raise ValueError("Scene prompt cannot be empty!")
# --- 1. Generate Narrative Text (Gemini or HF fallback) ---
progress(0.1, desc="βοΈ Crafting narrative...")
# ... (Full narrative generation logic from previous app.py) ...
# ... (This part should be copied from your last working version, it already handles Gemini/HF choice) ...
narrative_text_generated = "Simulated Narrative." # Placeholder
text_model_info = TEXT_MODELS.get(text_model_key)
if text_model_info and text_model_info["type"] != "none":
system_p = get_narrative_system_prompt("default"); prev_narrative = current_story_obj.get_last_scene_narrative(); user_p = format_narrative_user_prompt(scene_prompt_text, prev_narrative)
log_accumulator_type != "none":
image_response = None
if selected_image_provider_actual_type.startswith("dalle_"): # Catches "dalle_3", "dalle_2"
if DALLE_IMAGE_IS_READY:
dalle_model_version = "dall-e-3" if selected_image_provider_actual_type == "dalle_3" else "dall-e-2"
dalle_size = "1024x1024" # DALL-E 3 supports more, DALL-E 2 has fixed
if dalle_model_version == "dall-e-3" and image_quality == "High Detail": dalle_quality = "hd"
else: dalle_quality = "standard"
image_response = generate_image_dalle(full_image_prompt, model=dalle_model_version, size=dalle_size, quality=dalle_quality)
else:
image_generation_error_message = "**Image Error:** DALL-E selected but API not ready (check STORYVERSE_OPENAI_API_KEY)."
elif selected_image_provider_actual_type.startswith("hf_"):
if HF_IMAGE_IS_READY:
hf_model_id_to_call = "stabilityai/stable-diffusion-xl-base-1.0" # Default HF
img_width, img_height = 768, 768
if selected_image_provider_actual_type == "hf_openjourney": hf_model_id_to_call = "prompthero/openjourney"; img_width,img_height = 512,512
elif selected_image_provider_actual_type == "hf_sd_1_5": hf_model_id_to_call = "runwayml/stable-diffusion-v1-5"; img_width,img_height = 512,512
image_response = generate_image_hf_model(full_image_prompt, model_id=hf_model_id_to_call, negative_prompt=negative_prompt_text or COMMON_NEGATIVE_PROMPTS, width=img_width, height=img.append(f" Narrative: Using {text_model_key} ({text_model_info['id']}).")
text_response = None
if text_model_info["type"] == "gemini": text_response = generate_text_gemini(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
elif text_model_info["type"] == "hf_text": text_response = generate_text_hf(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
if text_response and text_response.success: narrative_text_generated = basic_text_cleanup(text_response.text); log_accumulator.append(f" Narrative: Success.")
elif text_response: narrative_text_generated = f"**Narrative Error ({text_model_key}):** {text_response.error}"; log_accumulator.append(f" Narrative: FAILED - {text_response.error}")
else: log_accumulator.append(f" Narrative: FAILED - No response from {text_model_key}.")
else: narrative_text_generated = "**Narrative Error:** Text model unavailable."; log_accumulator.append(f" Narrative: FAILED - Model '{text_model_key}' unavailable.")
ret_latest_narrative_str_content = f"## Scene Idea: {scene_prompt_text}\n\n{narrative_text_generated}"
ret_latest_narrative_md_obj = gr.Markdown(value=ret_latest_narrative_str_content)
yield { output_latest_scene_narrative: ret_latest_narrative_md_obj, output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 2. Generate Image (NOW USING DALL-E primary, HF fallback) ---
progress(0.5, desc="π¨ Conjuring visuals...")
image_generated_pil = None
image_generation_error_message = None
# `image_provider_key` is the UI display string, e.g., "πΌοΈ OpenAI DALL-E 3"
_height)
else:
image_generation_error_message = "**Image Error:** HF Image Model selected but API not ready (check STORYVERSE_HF_TOKEN)."
else:
image_generation_error_message = f"**Image Error:** Provider type '{selected_image_provider_actual_type}' is not handled."
if image_response and image_response.success:
image_generated_pil = image_response.image
log_accumulator.append(f" Image: Success from {image_response.provider} (Model: {image_response.model_id_used}).")
elif image_response:
image_generation_error_message = f"**Image Error ({image_response.provider} - {image_response.model_id_used}):** {image_response.error}"
log_accumulator.append(f" Image: FAILED - {image_response.error}")
elif not image_generation_error_message: # If no response and no specific error set yet
image_generation_error_message = f"**Image Error:** No response/unknown issue with {image_provider_key}."
if not image_generated_pil and not image_generation_error_message: # If no provider matched or was ready
image_generation_error_message = "**Image Error:** No valid image provider configured or selected for this request."
log_accumulator.append(f" Image: FAILED - {image_generation_error_message}")
ret_latest_image = image_generated_pil if image_generated_pil else create_placeholder_image("Image Gen Failed", color="#401010")
yield { output_latest_scene_image: gr.Image(value=ret_latest_image),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 3. Add Scene to Story Object & 4. Prepare Final Return Values ---
# ... (This part remains largely the same as the previous full app.py) ...
final_scene_error=None; # ... (set based on narrative/image errors) ...
if image_generation_error_message and "**Narrative Error**" in narrative_text_generated : final_scene_error = f"{narrative_text_generated}\n{image_generation_error_message}"
elif "**Narrative Error**" in narrative_text_generated: final_scene_error = narrative_text_generated
elif image_generation_error_message: final_scene_error = image_generation_error_message
current_story_obj.add_scene_from_elements(user_prompt=scene_prompt_text # `selected_image_provider_type` is the internal type, e.g., "dalle_3"
selected_image_provider_type = IMAGE_PROVIDERS.get(image_provider_key)
image_content_prompt_for_gen = narrative_text_generated if narrative_text_generated and "Error" not in narrative_text_generated else scene_prompt_text
quality_keyword = "detailed, high quality, vivid colors, " if image_quality == "High Detail" else ""
full_image_prompt = format_image_generation_prompt(quality_keyword + image_content_prompt_for_gen[:350], image_style_dropdown, artist_style_text)
log_accumulator.append(f" Image: Attempting with provider key '{image_provider_key}' (maps to type '{selected_image_provider_type}'). Style: {image_style_dropdown}.")
if selected_image_provider_type and selected_image_provider_type != "none":
image_response = None
if selected_image_provider_type == "dalle_3":
if DALLE_IMAGE_IS_READY:
image_response = generate_image_dalle(full_image_prompt, model="dall-e-3", quality="hd" if image_quality=="High Detail" else "standard")
else: image_generation_error_message = "**Image Error:** DALL-E 3 selected but API not ready (check STORYVERSE_OPENAI_API_KEY)."
elif selected_image_provider_type == "dalle_2":
if DALLE_IMAGE_IS_READY:
image_response = generate_image_dalle(full_image_prompt, model="dall-e-2", size="1024x1024")
else: image_generation_error_message = "**Image Error:** DALL-E 2 selected but API not ready."
# Fallback to HF models
elif selected_image_provider_type.startswith("hf_"):
if HF_IMAGE_IS_READY:
hf_model_id_to_call = "stabilityai/stable-diffusion-xl-base-1.0" # Default HF
img_width, img_height = 768, 768
if selected_image_provider_type == "hf_openjourney": hf_model_id_to_call = "prompthero/openjourney"; img_width,img_height = 512,512
elif selected_image_provider_type == "hf_sd_1_5": hf_model_id_to_call = "runwayml/stable-diffusion-v1-5"; img_width,img_height = 512,512
image_response = generate_image_hf_model(full_image_prompt, model_id=hf_model_id_to_call, negative_prompt=negative_prompt_text or COMMON_NEGATIVE_PROMPTS, width=img_width, height=img_height)
else: image_generation_error_message = "**Image Error:** HF Image Model selected but API not ready (check STORY, narrative_text=narrative_text_generated, image=image_generated_pil, image_style_prompt=f"{image_style_dropdown} by {artist_style_text}", image_provider=image_provider_key, error_message=final_scene_error)
ret_story_state = current_story_obj; log_accumulator.append(f" Scene {current_story_obj.current_scene_number} processed.")
ret_gallery = current_story_obj.get_all_scenes_for_gallery_display()
_ , latest_narr_for_display_final_str_temp = current_story_obj.get_latest_scene_details_for_display()
ret_latest_narrative_md_obj = gr.Markdown(value=latest_narr_for_display_final_str_temp)
status_html_str_temp = f"<p class='error_text'>Scene added with errors.</p>" if final_scene_error else f"<p class='success_text'>π Scene woven!</p>"
ret_status_bar_html_obj = gr.HTML(value=status_html_str_temp)
progress(1.0, desc="Scene Complete!")
except ValueError as ve: # ... (Error handling as before) ...
log_accumulator.append(f"\n**INPUT ERROR:** {ve}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>ERROR: {ve}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Error\n{ve}")
except Exception as e: # ... (Error handling as before) ...
log_accumulator.append(f"\n**RUNTIME ERROR:** {e}\n{traceback.format_exc()}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>UNEXPECTED ERROR: {e}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Unexpected Error\n{e}")
current_total_time = time.time() - start_time
log_accumulator.append(f" Cycle ended. Total time: {current_total_time:.2f}s")
ret_log_md = gr.Markdown(value="\n".join(log_accumulator))
return (ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md)
# --- clear_story_state_ui_wrapper, surprise_me_func, disable_buttons_for_processing, enable_buttons_after_processing ---
# (These functions remain IDENTICAL to the ones in the last full app.py that fixed the ValueError)
def clear_story_state_ui_wrapper(): new_story=Story(); ph_img=create_placeholder_image("Blank..."); return(new_story,[(ph_img,"New...")],None,gr.Markdown("## Cleared"),gr.HTML("<p>Cleared.</p>"),"Log Cleared","")
def surprise_me_func(): themes = ["Cosmic Horror", "Solarpunk Utopia"]; actions = ["unearths an artifact", "negotiates"]; settings = ["on a rogue planet", "in a city in a tree"]; prompt = f"A protagonist {random.choice(actions)} {random.choice(settings)}. Theme: {random.choice(themes)}."; style = random.choice(list(STYLE_PRESETS.keys())); artist = random.choice(["H.R. Giger", "Moebius",VERSE_HF_TOKEN)."
else: image_generation_error_message = f"**Image Error:** Provider type '{selected_image_provider_type}' not handled."
if image_response and image_response.success: image_generated_pil = image_response.image; log_accumulator.append(f" Image: Success from {image_response.provider} (Model: {image_response.model_id_used}).")
elif image_response: image_generation_error_message = f"**Image Error ({image_response.provider} - {image_response.model_id_used}):** {image_response.error}"; log_accumulator.append(f" Image: FAILED - {image_response.error}")
elif not image_generation_error_message: image_generation_error_message = f"**Image Error:** No response/unknown issue with {image_provider_key}."; log_accumulator.append(f" Image: FAILED - No response object.")
if not image_generated_pil and not image_generation_error_message:
image_generation_error_message = "**Image Error:** No valid image provider configured or selected for the chosen option."
log_accumulator.append(f" Image: FAILED - {image_generation_error_message}")
ret_latest_image = image_generated_pil if image_generated_pil else create_placeholder_image("Image Gen Failed", color="#401010")
yield { output_latest_scene_image: gr.Image(value=ret_latest_image),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 3. Add Scene to Story Object & 4. Prepare Final Return Values ---
# ... (This part remains largely the same as the previous full app.py) ...
final_scene_error=None; # ... (set based on narrative/image errors) ...
current_story_obj.add_scene_from_elements(user_prompt=scene_prompt_text, narrative_text=narrative_text_generated, image=image_generated_pil, image_style_prompt=f"{image_style_dropdown} by {artist_style_text}", image_provider=image_provider_key, error_message=final_scene_error)
ret_story_state = current_story_obj; log_accumulator.append(f" Scene {current_story_obj.current_scene_number} processed.")
ret_gallery = current_story_obj.get_all_scenes_for_gallery_display()
_ , latest_narr_for_display_final_str_temp = current_story_obj.get_latest_scene_details_for_display()
ret_latest_narrative_md_obj = gr.Markdown(value=latest_narr_for_display_final_str_temp)
status_html_str_temp = f"<p class='error_text'>Scene added with errors.</p>" if final_scene_error else f"<p class='success_text'>π Scene woven!</p>"
ret_status_bar_html_obj = gr.HTML(value=status_html_str_temp)
progress(1.0, desc="Scene Complete!")
except ValueError as ve: # ... (Error handling as before) ...
log_accumulator.append(f"\n**INPUT ERROR:** {ve}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>ERROR: {ve}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Error\n{ve}")
except Exception as e: # ... (Error handling as before) ...
log_accumulator.append(f"\n**RUNTIME ERROR:** {e}\n{traceback.format_exc()}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>UNEXPECTED ERROR: {e}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Unexpected Error\n{e}")
""]*2); return prompt, style, artist
def disable_buttons_for_processing(): return gr.Button(interactive=False), gr.Button(interactive=False)
def enable_buttons_after_processing(): return gr.Button(interactive=True), gr.Button(interactive=True)
# --- Gradio UI Definition ---
with gr.Blocks(theme=omega_theme, css=omega_css, title="β¨ StoryVerse Omega β¨") as story_weaver_demo:
story_state_output = gr.State(Story())
# ... (Full UI layout from the "app.py in full with update" response where NameError for create_placeholder was fixed)
# ... (This includes defining all component variables like scene_prompt_input, output_gallery, engage_button etc. IN THE LAYOUT)
# Key change: Update the image_provider_dropdown choices and default value.
gr.Markdown("<div align='center'><h1>β¨ StoryVerse Omega β¨</h1>\n<h3>Craft Immersive Multimodal Worlds with AI</h3></div>")
gr.HTML("<div class='important-note'><strong>Welcome, Worldsmith!</strong> ... API keys (<code>STORYVERSE_...</code>) ...</div>")
with gr.Accordion("π§ AI Services Status & Info", open=False):
status_text_list = []; text_llm_ok = (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY); image_gen_ok = (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY)
if not text_llm_ok and not image_gen_ok: status_text_list.append("<p style='color:#FCA5A5;font-weight:bold;'>β οΈ CRITICAL: NO AI SERVICES CONFIGURED.</p>")
else:
if text_llm_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Text Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Text Generation NOT Ready.</p>")
if image_gen_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Image Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Image Generation NOT Ready.</p>")
gr.HTML("".join(status_text_list))
with gr.Row(equal_height=False, variant="panel"):
with gr.Column(scale=7, min_width=450):
gr.Markdown("### π‘ **Craft Your Scene**", elem_classes="input-section-header")
with gr.Group(): scene_prompt_input = gr.Textbox(lines=7, label="Scene Vision:", placeholder="e.g., Amidst swirling cosmic dust...")
with gr.Row(elem_classes=["compact-row"]):
with gr.Column(scale=2): image_style_input = gr.Dropdown(choices=["Default (Cinematic Realism)"] + sorted(list(STYLE_PRESETS.keys())), value="Default (Cinematic Realism)", label="Visual Style Preset", allow_custom_value=True)
with gr.Column(scale=2): artist_style_input = gr.Textbox(label="Artistic Inspiration (Optional):", placeholder="e.g., Moebius...")
negative_prompt_input = gr.Textbox(lines=2, label="Exclude from Image:", value=COMMON_NEGATIVE_PROMPTS)
with gr.Accordion("βοΈ Advanced AI Configuration", open=False):
with gr.Group():
text_model_dropdown = gr.Dropdown(choices=list(TEXT_MODELS.keys()), value=UI_DEFAULT_TEXT_MODEL_KEY, label="Narrative AI Engine")
image_provider_dropdown = gr.Dropdown(choices=list(IMAGE_PROVIDERS.keys()), value=UI_DEFAULT_IMAGE_PROVIDER_KEY, label="Visual AI Engine (DALL-E/HF)") # UPDATED LABEL
with gr.Row():
narrative_length_dropdown = gr.Dropdown(["Short", "Medium", "Detailed"], value="Medium", label="Narrative Detail")
image_quality_dropdown = gr.Dropdown(["Standard", "High Detail", "Sketch"], value="Standard", label="Image Detail")
with gr.Row(elem_classes=["compact-row"], equal_height=True):
engage_button = gr.Button("π Weave Scene!", variant="primary", scale=3
current_total_time = time.time() - start_time
log_accumulator.append(f" Cycle ended. Total time: {current_total_time:.2f}s")
ret_log_md = gr.Markdown(value="\n".join(log_accumulator))
return (ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md)
# --- clear_story_state_ui_wrapper, surprise_me_func, disable_buttons_for_processing, enable_buttons_after_processing ---
# (These functions remain IDENTICAL to the ones in the last full app.py)
def clear_story_state_ui_wrapper(): new_story=Story(); ph_img=create_placeholder_image("Blank..."); return(new_story,[(ph_img,"New...")],None,gr.Markdown("## Cleared"),gr.HTML("<p>Cleared.</p>"),"Log Cleared","")
def surprise_me_func(): themes = ["Cosmic Horror", "Solarpunk Utopia"]; actions = ["unearths an artifact", "negotiates"]; settings = ["on a rogue planet", "in a city in a tree"]; prompt = f"A protagonist {random.choice(actions)} {random.choice(settings)}. Theme: {random.choice(themes)}."; style = random.choice(list(STYLE_PRESETS.keys())); artist = random.choice(["H.R. Giger", "Moebius", ""]*2); return prompt, style, artist
def disable_buttons_for_processing(): return gr.Button(interactive=False), gr.Button(interactive=False)
def enable_buttons_after_processing(): return gr.Button(interactive=True), gr.Button(interactive=True)
# --- Gradio UI Definition ---
with gr.Blocks(theme=omega_theme, css=omega_css, title="β¨ StoryVerse Omega β¨") as story_weaver_demo:
# Define Python variables for UI components
story_state_output = gr.State(Story())
scene_prompt_input = gr.Textbox()
image_style_input = gr.Dropdown()
artist_style_input = gr.Textbox()
negative_prompt_input = gr.Textbox()
text_model_dropdown = gr.Dropdown()
image_provider_dropdown = gr.Dropdown()
narrative_length_dropdown = gr.Dropdown()
image_quality_dropdown = gr.Dropdown()
output_gallery = gr.Gallery()
output_latest_scene_image = gr.Image()
output_latest_scene_narrative = gr.Markdown()
output_status_bar = gr.HTML()
output_interaction_log_markdown = gr.Markdown()
engage_button = gr.Button()
surprise_button = gr.Button()
clear_story_button = gr.Button()
# Layout UI
gr.Markdown("<div align='center'><h1>β¨ StoryVerse Omega β¨</h1>\n<h3>Craft Immersive Multimodal Worlds with AI</h3></div>")
gr.HTML("<div class='important-note'><strong>Welcome, Worldsmith!</strong> ... API keys ...</div>")
with gr.Accordion("π§ AI Services Status & Info", open=False): # Updated status check
status_text_list = []; text_llm_ok = (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY); image_gen_ok = (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY)
if not text_llm_ok and not image_gen_ok: status_text_list.append("<p style='color:#FCA5A5;font-weight:bold;'>β οΈ CRITICAL: NO AI SERVICES CONFIGURED.</p>")
else:
if text_llm_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Text Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Text Generation NOT Ready.</p>")
if image_gen_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Image Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Image Generation NOT Ready.</p>")
gr.HTML("".join(status_text_list))
with gr.Row(equal_height=False, variant="panel"):
with gr.Column(scale=7, min_width=450):
gr.Markdown("### π‘ **Craft Your Scene**", elem_classes="input-section-header")
with gr.Group(): scene_prompt_input = gr.Textbox(lines=7, label="Scene Vision:", placeholder="e.g., Amidst swirling cosmic dust...")
with gr.Row(elem_classes=["compact-row"]):
with gr.Column(scale=2): image_style_input = gr.Dropdown(choices=["Default (Cinematic Realism)"] + sorted(list(STYLE_PRESETS.keys())), value="Default (Cinematic Realism)", label="Visual Style", allow_custom_, icon="β¨")
surprise_button = gr.Button("π² Surprise!", variant="secondary", scale=1, icon="π")
clear_story_button = gr.Button("ποΈ New", variant="stop", scale=1, icon="β»οΈ")
output_status_bar = gr.HTML(value="<p class='processing_text status_text'>Ready to weave!</p>")
with gr.Column(scale=10, min_width=700):
gr.Markdown("### πΌοΈ **Your StoryVerse**", elem_classes="output-section-header")
with gr.Tabs():
with gr.TabItem("π Latest Scene"): output_latest_scene_image = gr.Image(label="Latest Image", type="pil", interactive=False, height=512, show_label=False); output_latest_scene_narrative = gr.Markdown()
with gr.TabItem("π Story Scroll"): output_gallery = gr.Gallery(label="Story Scroll", show_label=False, columns=4, object_fit="cover", height=700, preview=True)
with gr.TabItem("βοΈ Log"):
with gr.Accordion("Interaction Log", open=False): output_interaction_log_markdown = gr.Markdown("Log...")
# Event Handlers (same .then() chain as before)
engage_button.click(fn=disable_buttons_for_processing, outputs=[engage_button, surprise_button], queue=False)\
.then(fn=add_scene_to_story_orchestrator, inputs=[story_state_output, scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input, text_model_dropdown, image_provider_dropdown, narrative_length_dropdown, image_quality_dropdown], outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown])\
.then(fn=enable_buttons_after_processing, outputs=[engage_button, surprise_button], queue=False)
clear_story_button.click(fn=clear_story_state_ui_wrapper, outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown, scene_prompt_input])
surprise_button.click(fn=surprise_me_func, outputs=[scene_prompt_input, image_style_input, artist_style_input])
gr.Examples(examples=[["Traveler in desert...", "Sci-Fi Western", "Moebius", "greenery"]], inputs=[scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input], label="π Examples π")
gr.HTML("<p style='text-align:center; font-size:0.9em; color:#8080A0;'>β¨ StoryVerse Omegaβ’ β¨</p>")
# --- Entry Point ---
if __name__ == "__main__":
print("="*80); print("β¨ StoryVerse Omega (DALL-E/Gemini Focus) Launching... β¨")
print(f" Gemini Text Ready: {GEMINI_TEXT_IS_READY}"); print(f" HF Text Ready: {HF_TEXT_IS_READY}")
print(f" DALL-E Image Ready: {DALLE_IMAGE_IS_READY}"); print(f" HF Image API Ready: {HF_IMAGE_IS_READY}")
if not (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY) or not (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY): print(" π΄ WARNING: Not all services configured.")
print(f" Default Text Model: {UI_DEFAULT_TEXT_MODEL_KEY}"); print(f" Default Image Provider: {UI_DEFAULT_IMAGE_PROVIDER_KEY}")
print("="*80)
story_weaver_demo.launch(debug=True, server_name="0.0.0.0", share=False) |