File size: 22,214 Bytes
ce507ec
0751433
c984bb4
9826cfc
9c9e46a
fe7d37a
 
ce507ec
9c9e46a
 
d97ac9f
9c9e46a
ce507ec
 
 
a1354f4
9c9e46a
fe7d37a
ce507ec
9c9e46a
fe7d37a
 
1c5c923
9c9e46a
 
 
fe7d37a
 
ce507ec
1c5c923
9c9e46a
fe7d37a
bc9ca80
9c9e46a
 
 
 
 
 
 
fe7d37a
 
 
9c9e46a
ce507ec
1c5c923
9c9e46a
 
 
 
 
 
 
 
9826cfc
9c9e46a
 
 
70efebe
fe7d37a
9c9e46a
 
 
 
 
fe7d37a
 
 
 
 
 
 
 
9c9e46a
 
fa7abf4
d97ac9f
9c9e46a
fa7abf4
ce507ec
c984bb4
3c54be4
db01582
fa7abf4
9c9e46a
 
 
d7896b6
9c9e46a
d7896b6
faf8e43
9c9e46a
faf8e43
 
a1354f4
db01582
9c9e46a
db01582
fa7abf4
9c9e46a
fa7abf4
9c9e46a
fa7abf4
9c9e46a
 
 
fe7d37a
 
9c9e46a
 
fe7d37a
 
 
faf8e43
 
bc9ca80
9c9e46a
70efebe
bc9ca80
9c9e46a
fa7abf4
9c9e46a
 
fa7abf4
fe7d37a
 
9c9e46a
faf8e43
fe7d37a
9c9e46a
fe7d37a
9c9e46a
fe7d37a
9c9e46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9ca80
9c9e46a
 
faf8e43
9c9e46a
 
 
 
 
 
 
fa7abf4
d7896b6
a1354f4
d7896b6
fa7abf4
9c9e46a
 
 
 
 
d7896b6
 
70efebe
9c9e46a
70efebe
fa7abf4
 
9c9e46a
 
 
 
 
faf8e43
a1354f4
9c9e46a
70efebe
3c54be4
9c9e46a
d97ac9f
9c9e46a
 
 
 
 
 
70efebe
9826cfc
a1354f4
70efebe
a1354f4
9c9e46a
 
 
fe7d37a
9c9e46a
fe7d37a
9c9e46a
fe7d37a
 
9c9e46a
 
 
 
fe7d37a
 
d97ac9f
fa7abf4
d97ac9f
9c9e46a
d97ac9f
9c9e46a
 
 
d97ac9f
1c5c923
d97ac9f
9c9e46a
d97ac9f
9c9e46a
 
d7896b6
9c9e46a
 
 
 
fa7abf4
9c9e46a
fa7abf4
9c9e46a
 
 
 
d97ac9f
9c9e46a
 
 
 
 
 
 
 
6aa264c
db01582
0751433
9c9e46a
 
 
 
70efebe
7dbc041
fa7abf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# storyverse_weaver/app.py
import gradio as gr
import os
import time
# ... (other imports: json, PIL, random, traceback) ...

# --- Core Logic Imports ---
from core.llm_services import initialize_text_llms, is_gemini_text_ready, is_hf_text_ready, generate_text_gemini, generate_text_hf
# MODIFIED IMPORT for image_services
from core.image_services import initialize_image_llms, is_dalle_ready, is_hf_image_api_ready, generate_image_dalle, generate_image_hf_model, ImageGenResponse 
from core.story_engine import Story, Scene
# ... (other core imports: prompts, utils)
from prompts.narrative_prompts import get_narrative_system_prompt, format_narrative_user_prompt
from prompts.image_style_prompts import STYLE_PRESETS, COMMON_NEGATIVE_PROMPTS, format_image_generation_prompt
from core.utils import basic_text_cleanup


# --- Initialize Services ---
initialize_text_llms()
initialize_image_llms() 

# --- Get API Readiness Status ---
GEMINI_TEXT_IS_READY = is_gemini_text_ready()
HF_TEXT_IS_READY = is_hf_text_ready() # For text fallback
DALLE_IMAGE_IS_READY = is_dalle_ready() # Primary image status
HF_IMAGE_IS_READY = is_hf_image_api_ready() # For image fallback

# --- Application Configuration (Models, Defaults) ---
TEXT_MODELS = {}
UI_DEFAULT_TEXT_MODEL_KEY = None
if GEMINI_TEXT_IS_READY: # Prioritize Gemini for text
    TEXT_MODELS["✨ Gemini 1.5 Flash (Narrate)"] = {"id": "gemini-1.5-flash-latest", "type": "gemini"}
    TEXT_MODELS["Legacy Gemini 1.0 Pro (Narrate)"] = {"id": "gemini-1.0-pro-latest", "type": "gemini"}
    UI_DEFAULT_TEXT_MODEL_KEY = "✨ Gemini 1.5 Flash (Narrate)"
elif HF_TEXT_IS_READY: # Fallback to HF for text
    TEXT_MODELS["Mistral 7B (Narrate via HF - Fallback)"] = {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf_text"}
    TEXT_MODELS["Gemma 2B (Narrate via HF - Fallback)"] = {"id": "google/gemma-2b-it", "type": "hf_text"}
    UI_DEFAULT_TEXT_MODEL_KEY = "Mistral 7B (Narrate via HF - Fallback)"
    
if not TEXT_MODELS: # If neither is ready
    TEXT_MODELS["No Text Models Configured"] = {"id": "dummy_text_error", "type": "none"}
    UI_DEFAULT_TEXT_MODEL_KEY = "No Text Models Configured"


IMAGE_PROVIDERS = {}
UI_DEFAULT_IMAGE_PROVIDER_KEY = None
if DALLE_IMAGE_IS_READY: # Prioritize DALL-E for images
    IMAGE_PROVIDERS["πŸ–ΌοΈ OpenAI DALL-E 3"] = "dalle_3" # Key for DALL-E 3
    IMAGE_PROVIDERS["πŸ–ΌοΈ OpenAI DALL-E 2 (Legacy)"] = "dalle_2" # Key for DALL-E 2
    UI_DEFAULT_IMAGE_PROVIDER_KEY = "πŸ–ΌοΈ OpenAI DALL-E 3"
elif HF_IMAGE_IS_READY: # Fallback to HF for images
    IMAGE_PROVIDERS["🎑 HF - Stable Diffusion XL Base (Fallback)"] = "hf_sdxl_base" 
    IMAGE_PROVIDERS["🎠 HF - OpenJourney (Fallback)"] = "hf_openjourney"
    UI_DEFAULT_IMAGE_PROVIDER_KEY = "🎑 HF - Stable Diffusion XL Base (Fallback)"

if not IMAGE_PROVIDERS:
    IMAGE_PROVIDERS["No Image Providers Configured"] = "none"
    UI_DEFAULT_IMAGE_PROVIDER_KEY = "No Image Providers Configured"


# ... (Theme, CSS, create_placeholder_image - REMAINS THE SAME as previous full app.py) ...
omega_theme = gr.themes.Base(font=[gr.themes.GoogleFont("Lexend Deca")], primary_hue=gr.themes.colors.purple).set(body_background_fill="#0F0F1A", block_background_fill="#1A1A2E", slider_color="#A020F0")
omega_css = "body, .gradio-container { background-color: #0F0F1A !important; color: #D0D0E0 !important; } /* Ensure this is complete */"
def create_placeholder_image(text="Processing...", size=(512, 512), color="#23233A", text_color="#E0E0FF"): # Keep this
    img = Image.new('RGB', size, color=color); draw = ImageDraw.Draw(img); #... (full implementation)
    try: font_path = "arial.ttf" if os.path.exists("arial.ttf") else None 
    except: font_path = None 
    try: font = ImageFont.truetype(font_path, 40) if font_path else ImageFont.load_default()
    except IOError: font = ImageFont.load_default()
    if hasattr(draw, 'textbbox'): bbox = draw.textbbox((0,0), text, font=font); tw, th = bbox[2]-bbox[0], bbox[3]-bbox[1]
    else: tw, th = draw.textsize(text, font=font) 
    draw.text(((size[0]-tw)/2, (size[1]-th)/2), text, font=font, fill=text_color); return img


# --- StoryVerse Weaver Orchestrator (MODIFIED image generation part) ---
def add_scene_to_story_orchestrator(
    current_story_obj: Story, scene_prompt_text: str, image_style_dropdown: str, artist_style_text: str,
    negative_prompt_text: str, text_model_key: str, image_provider_key: str, # image_provider_key now maps to DALL-E or HF
    narrative_length: str, image_quality: str,
    progress=gr.Progress(track_tqdm=True)
):
    start_time = time.time() 
    if not current_story_obj: current_story_obj = Story() 
    log_accumulator = [f"**πŸš€ Scene {current_story_obj.current_scene_number + 1} - {time.strftime('%H:%M:%S')}**"]
    # ... (Initialize ret_... placeholders as before) ...
    ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md = \
        current_story_obj, current_story_obj.get_all_scenes_for_gallery_display(), None, gr.Markdown("Processing..."), gr.HTML("<p>Processing...</p>"), gr.Markdown("\n".join(log_accumulator))

    # Initial yield
    yield {
        output_status_bar: gr.HTML(value=f"<p class='processing_text status_text'>🌌 Weaving Scene {current_story_obj.current_scene_number + 1}...</p>"),
        # ... (other initial yields)
        output_latest_scene_image: gr.Image(value=create_placeholder_image("🎨 Conjuring visuals...")),
        output_latest_scene_narrative: gr.Markdown(value=" Musing narrative..."),
        output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator))
    }
    # Note: Button disabling/enabling is handled by the .then() chain in UI definition

    try:
        if not scene_prompt_text.strip(): raise ValueError("Scene prompt cannot be empty!")

        # --- 1. Generate Narrative Text (using Gemini or HF fallback) ---
        progress(0.1, desc="✍️ Crafting narrative...")
        # ... (Full narrative generation logic from previous app.py, which already handles Gemini/HF choice) ...
        # ... (This part should be copied from your last working version) ...
        narrative_text_generated = "Simulated Narrative." # Placeholder
        text_model_info = TEXT_MODELS.get(text_model_key)
        if text_model_info and text_model_info["type"] != "none":
            system_p = get_narrative_system_prompt("default"); prev_narrative = current_story_obj.get_last_scene_narrative(); user_p = format_narrative_user_prompt(scene_prompt_text, prev_narrative)
            log_accumulator.append(f"  Narrative: Using {text_model_key} ({text_model_info['id']}).")
            text_response = None
            if text_model_info["type"] == "gemini": text_response = generate_text_gemini(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
            elif text_model_info["type"] == "hf_text": text_response = generate_text_hf(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
            if text_response and text_response.success: narrative_text_generated = basic_text_cleanup(text_response.text); log_accumulator.append(f"  Narrative: Success.")
            elif text_response: narrative_text_generated = f"**Narrative Error ({text_model_key}):** {text_response.error}"; log_accumulator.append(f"  Narrative: FAILED - {text_response.error}")
            else: log_accumulator.append(f"  Narrative: FAILED - No response from {text_model_key}.")
        else: narrative_text_generated = "**Narrative Error:** Text model unavailable."; log_accumulator.append(f"  Narrative: FAILED - Model '{text_model_key}' unavailable.")
        ret_latest_narrative_str_content = f"## Scene Idea: {scene_prompt_text}\n\n{narrative_text_generated}"
        ret_latest_narrative_md_obj = gr.Markdown(value=ret_latest_narrative_str_content)
        yield { output_latest_scene_narrative: ret_latest_narrative_md_obj, output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }


        # --- 2. Generate Image (NOW USING DALL-E or HF fallback) ---
        progress(0.5, desc="🎨 Conjuring visuals...")
        image_generated_pil = None
        image_generation_error_message = None
        selected_image_provider_actual_type = IMAGE_PROVIDERS.get(image_provider_key) # e.g., "dalle_3", "hf_sdxl_base"

        image_content_prompt_for_gen = narrative_text_generated if narrative_text_generated and "Error" not in narrative_text_generated else scene_prompt_text
        quality_keyword = "detailed, high quality, " if image_quality == "High Detail" else "" # Simpler quality keyword
        full_image_prompt = format_image_generation_prompt(quality_keyword + image_content_prompt_for_gen[:350], image_style_dropdown, artist_style_text)
        log_accumulator.append(f"  Image: Attempting with provider key '{image_provider_key}' (maps to type '{selected_image_provider_actual_type}'). Style: {image_style_dropdown}.")

        if selected_image_provider_actual_type and selected_image_provider_actual_type != "none":
            image_response = None
            if selected_image_provider_actual_type == "dalle_3":
                if DALLE_IMAGE_IS_READY:
                    image_response = generate_image_dalle(full_image_prompt, model="dall-e-3", quality="hd" if image_quality=="High Detail" else "standard")
                else: image_generation_error_message = "**Image Error:** DALL-E 3 selected but API not ready."
            elif selected_image_provider_actual_type == "dalle_2":
                if DALLE_IMAGE_IS_READY:
                    image_response = generate_image_dalle(full_image_prompt, model="dall-e-2", size="1024x1024") # DALL-E 2 has fixed sizes
                else: image_generation_error_message = "**Image Error:** DALL-E 2 selected but API not ready."
            # Fallback to HF models if DALL-E not selected or not ready, but HF is
            elif selected_image_provider_actual_type.startswith("hf_"):
                if HF_IMAGE_IS_READY:
                    hf_model_id_to_call = "stabilityai/stable-diffusion-xl-base-1.0" # Default HF
                    img_width, img_height = 768, 768
                    if selected_image_provider_actual_type == "hf_openjourney": hf_model_id_to_call = "prompthero/openjourney"; img_width,img_height = 512,512
                    elif selected_image_provider_actual_type == "hf_sd_1_5": hf_model_id_to_call = "runwayml/stable-diffusion-v1-5"; img_width,img_height = 512,512
                    image_response = generate_image_hf_model(full_image_prompt, model_id=hf_model_id_to_call, negative_prompt=negative_prompt_text or COMMON_NEGATIVE_PROMPTS, width=img_width, height=img_height)
                else: image_generation_error_message = "**Image Error:** HF Image Model selected but API not ready."
            else: image_generation_error_message = f"**Image Error:** Provider type '{selected_image_provider_actual_type}' not handled."

            if image_response and image_response.success: image_generated_pil = image_response.image; log_accumulator.append(f"  Image: Success from {image_response.provider} (Model: {image_response.model_id_used}).")
            elif image_response: image_generation_error_message = f"**Image Error ({image_response.provider} - {image_response.model_id_used}):** {image_response.error}"; log_accumulator.append(f"  Image: FAILED - {image_response.error}")
            elif not image_generation_error_message: image_generation_error_message = f"**Image Error:** No response/unknown issue with {image_provider_key}."; log_accumulator.append(f"  Image: FAILED - No response object.")
        
        if not image_generated_pil and not image_generation_error_message: # If neither DALL-E nor HF was selected/ready
            image_generation_error_message = "**Image Error:** No valid image provider configured or selected."
            log_accumulator.append(f"  Image: FAILED - {image_generation_error_message}")

        ret_latest_image = image_generated_pil if image_generated_pil else create_placeholder_image("Image Gen Failed", color="#401010")
        yield { output_latest_scene_image: gr.Image(value=ret_latest_image),
                output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }

        # --- 3. Add Scene to Story Object & 4. Prepare Final Return Values ---
        # ... (This part remains largely the same as the previous full app.py) ...
        final_scene_error=None; # ... (set based on narrative/image errors) ...
        current_story_obj.add_scene_from_elements(user_prompt=scene_prompt_text, narrative_text=narrative_text_generated, image=image_generated_pil, image_style_prompt=f"{image_style_dropdown} by {artist_style_text}", image_provider=image_provider_key, error_message=final_scene_error)
        ret_story_state = current_story_obj; log_accumulator.append(f"  Scene {current_story_obj.current_scene_number} processed.")
        ret_gallery = current_story_obj.get_all_scenes_for_gallery_display()
        _ , latest_narr_for_display_final_str_temp = current_story_obj.get_latest_scene_details_for_display()
        ret_latest_narrative_md_obj = gr.Markdown(value=latest_narr_for_display_final_str_temp)
        status_html_str_temp = f"<p class='error_text'>Scene added with errors.</p>" if final_scene_error else f"<p class='success_text'>🌌 Scene woven!</p>"
        ret_status_bar_html_obj = gr.HTML(value=status_html_str_temp)
        progress(1.0, desc="Scene Complete!")


    except ValueError as ve: # ... (Error handling as before) ...
        log_accumulator.append(f"\n**INPUT ERROR:** {ve}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>ERROR: {ve}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Error\n{ve}")
    except Exception as e: # ... (Error handling as before) ...
        log_accumulator.append(f"\n**RUNTIME ERROR:** {e}\n{traceback.format_exc()}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>UNEXPECTED ERROR: {e}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Unexpected Error\n{e}")
    
    current_total_time = time.time() - start_time
    log_accumulator.append(f"  Cycle ended. Total time: {current_total_time:.2f}s")
    ret_log_md = gr.Markdown(value="\n".join(log_accumulator))
    
    return (ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md)

# --- clear_story_state_ui_wrapper, surprise_me_func, disable_buttons_for_processing, enable_buttons_after_processing ---
# (These functions remain IDENTICAL to the ones in the last full app.py that fixed the ValueError)
def clear_story_state_ui_wrapper(): new_story=Story(); ph_img=create_placeholder_image("Blank..."); return(new_story,[(ph_img,"New...")],None,gr.Markdown("## Cleared"),gr.HTML("<p>Cleared.</p>"),"Log Cleared","")
def surprise_me_func(): themes = ["Cosmic Horror", "Solarpunk"]; actions = ["unearths artifact", "negotiates"]; settings = ["on rogue planet", "in tree city"]; prompt = f"Protagonist {random.choice(actions)} {random.choice(settings)}. Theme: {random.choice(themes)}."; style = random.choice(list(STYLE_PRESETS.keys())); artist = random.choice(["Giger", "Moebius", ""]*2); return prompt, style, artist
def disable_buttons_for_processing(): return gr.Button(interactive=False), gr.Button(interactive=False)
def enable_buttons_after_processing(): return gr.Button(interactive=True), gr.Button(interactive=True)


# --- Gradio UI Definition ---
with gr.Blocks(theme=omega_theme, css=omega_css, title="✨ StoryVerse Omega ✨") as story_weaver_demo:
    story_state_output = gr.State(Story()) 
    # ... (Full UI layout from the previous app.py - "rewrite app.py with update")
    # ... (This includes defining all component variables like scene_prompt_input, output_gallery, engage_button etc. IN THE LAYOUT)
    # Ensure the image_provider_dropdown choices and default reflect DALL-E and HF
    gr.Markdown("<div align='center'><h1>✨ StoryVerse Omega ✨</h1>\n<h3>Craft Immersive Multimodal Worlds with AI</h3></div>")
    gr.HTML("<div class='important-note'><strong>Welcome, Worldsmith!</strong> ... API keys (<code>STORYVERSE_...</code>) ...</div>")
    with gr.Accordion("πŸ”§ AI Services Status & Info", open=False):
        status_text_list = []; text_llm_ok = (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY); image_gen_ok = (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY)
        if not text_llm_ok and not image_gen_ok: status_text_list.append("<p style='color:#FCA5A5;font-weight:bold;'>⚠️ CRITICAL: NO AI SERVICES CONFIGURED.</p>")
        else:
            if text_llm_ok: status_text_list.append("<p style='color:#A7F3D0;'>βœ… Text Generation Ready.</p>")
            else: status_text_list.append("<p style='color:#FCD34D;'>⚠️ Text Generation NOT Ready.</p>")
            if image_gen_ok: status_text_list.append("<p style='color:#A7F3D0;'>βœ… Image Generation Ready.</p>")
            else: status_text_list.append("<p style='color:#FCD34D;'>⚠️ Image Generation NOT Ready.</p>")
        gr.HTML("".join(status_text_list))

    with gr.Row(equal_height=False, variant="panel"):
        with gr.Column(scale=7, min_width=450): 
            gr.Markdown("### πŸ’‘ **Craft Your Scene**", elem_classes="input-section-header")
            with gr.Group(): scene_prompt_input = gr.Textbox(lines=7, label="Scene Vision:", placeholder="e.g., Amidst swirling cosmic dust...")
            with gr.Row(elem_classes=["compact-row"]):
                with gr.Column(scale=2): image_style_input = gr.Dropdown(choices=["Default (Cinematic Realism)"] + sorted(list(STYLE_PRESETS.keys())), value="Default (Cinematic Realism)", label="Visual Style Preset", allow_custom_value=True)
                with gr.Column(scale=2): artist_style_input = gr.Textbox(label="Artistic Inspiration (Optional):", placeholder="e.g., Moebius...")
            negative_prompt_input = gr.Textbox(lines=2, label="Exclude from Image:", value=COMMON_NEGATIVE_PROMPTS)
            with gr.Accordion("βš™οΈ Advanced AI Configuration", open=False):
                 with gr.Group():
                    text_model_dropdown = gr.Dropdown(choices=list(TEXT_MODELS.keys()), value=UI_DEFAULT_TEXT_MODEL_KEY, label="Narrative AI Engine")
                    image_provider_dropdown = gr.Dropdown(choices=list(IMAGE_PROVIDERS.keys()), value=UI_DEFAULT_IMAGE_PROVIDER_KEY, label="Visual AI Engine") # Updated choices
                    with gr.Row():
                        narrative_length_dropdown = gr.Dropdown(["Short", "Medium", "Detailed"], value="Medium", label="Narrative Detail")
                        image_quality_dropdown = gr.Dropdown(["Standard", "High Detail", "Sketch"], value="Standard", label="Image Detail")
            with gr.Row(elem_classes=["compact-row"], equal_height=True):
                engage_button = gr.Button("🌌 Weave Scene!", variant="primary", scale=3, icon="✨")
                surprise_button = gr.Button("🎲 Surprise!", variant="secondary", scale=1, icon="🎁")
                clear_story_button = gr.Button("πŸ—‘οΈ New", variant="stop", scale=1, icon="♻️")
            output_status_bar = gr.HTML(value="<p class='processing_text status_text'>Ready to weave!</p>")
        with gr.Column(scale=10, min_width=700): 
            gr.Markdown("### πŸ–ΌοΈ **Your StoryVerse**", elem_classes="output-section-header")
            with gr.Tabs():
                with gr.TabItem("🌠 Latest Scene"): output_latest_scene_image = gr.Image(label="Latest Image", type="pil", interactive=False, height=512, show_label=False); output_latest_scene_narrative = gr.Markdown() 
                with gr.TabItem("πŸ“š Story Scroll"): output_gallery = gr.Gallery(label="Story Scroll", show_label=False, columns=4, object_fit="cover", height=700, preview=True)
                with gr.TabItem("βš™οΈ Log"): 
                    with gr.Accordion("Interaction Log", open=False): output_interaction_log_markdown = gr.Markdown("Log...")

    # Event Handlers (same .then() chain as before)
    engage_button.click(fn=disable_buttons_for_processing, outputs=[engage_button, surprise_button], queue=False)\
        .then(fn=add_scene_to_story_orchestrator, inputs=[story_state_output, scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input, text_model_dropdown, image_provider_dropdown, narrative_length_dropdown, image_quality_dropdown], outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown])\
        .then(fn=enable_buttons_after_processing, outputs=[engage_button, surprise_button], queue=False)
    clear_story_button.click(fn=clear_story_state_ui_wrapper, outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown, scene_prompt_input])
    surprise_button.click(fn=surprise_me_func, outputs=[scene_prompt_input, image_style_input, artist_style_input])
    gr.Examples(examples=[["Traveler in desert...", "Sci-Fi Western", "Moebius", "greenery"]], inputs=[scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input], label="🌌 Examples 🌌")
    gr.HTML("<p style='text-align:center; font-size:0.9em; color:#8080A0;'>✨ StoryVerse Omegaβ„’ ✨</p>")

# --- Entry Point ---
if __name__ == "__main__":
    print("="*80); print("✨ StoryVerse Omega (DALL-E/Gemini Focus) Launching... ✨")
    print(f"  Gemini Text Ready: {GEMINI_TEXT_IS_READY}"); print(f"  HF Text Ready: {HF_TEXT_IS_READY}")
    print(f"  DALL-E Image Ready: {DALLE_IMAGE_IS_READY}"); print(f"  HF Image Ready: {HF_IMAGE_IS_READY}") # Check both
    if not (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY) or not (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY): print("  πŸ”΄ WARNING: Not all services configured.")
    print(f"  Default Text Model: {UI_DEFAULT_TEXT_MODEL_KEY}"); print(f"  Default Image Provider: {UI_DEFAULT_IMAGE_PROVIDER_KEY}")
    print("="*80)
    story_weaver_demo.launch(debug=True, server_name="0.0.0.0", share=False)