Spaces:
Sleeping
Sleeping
File size: 22,214 Bytes
ce507ec 0751433 c984bb4 9826cfc 9c9e46a fe7d37a ce507ec 9c9e46a d97ac9f 9c9e46a ce507ec a1354f4 9c9e46a fe7d37a ce507ec 9c9e46a fe7d37a 1c5c923 9c9e46a fe7d37a ce507ec 1c5c923 9c9e46a fe7d37a bc9ca80 9c9e46a fe7d37a 9c9e46a ce507ec 1c5c923 9c9e46a 9826cfc 9c9e46a 70efebe fe7d37a 9c9e46a fe7d37a 9c9e46a fa7abf4 d97ac9f 9c9e46a fa7abf4 ce507ec c984bb4 3c54be4 db01582 fa7abf4 9c9e46a d7896b6 9c9e46a d7896b6 faf8e43 9c9e46a faf8e43 a1354f4 db01582 9c9e46a db01582 fa7abf4 9c9e46a fa7abf4 9c9e46a fa7abf4 9c9e46a fe7d37a 9c9e46a fe7d37a faf8e43 bc9ca80 9c9e46a 70efebe bc9ca80 9c9e46a fa7abf4 9c9e46a fa7abf4 fe7d37a 9c9e46a faf8e43 fe7d37a 9c9e46a fe7d37a 9c9e46a fe7d37a 9c9e46a bc9ca80 9c9e46a faf8e43 9c9e46a fa7abf4 d7896b6 a1354f4 d7896b6 fa7abf4 9c9e46a d7896b6 70efebe 9c9e46a 70efebe fa7abf4 9c9e46a faf8e43 a1354f4 9c9e46a 70efebe 3c54be4 9c9e46a d97ac9f 9c9e46a 70efebe 9826cfc a1354f4 70efebe a1354f4 9c9e46a fe7d37a 9c9e46a fe7d37a 9c9e46a fe7d37a 9c9e46a fe7d37a d97ac9f fa7abf4 d97ac9f 9c9e46a d97ac9f 9c9e46a d97ac9f 1c5c923 d97ac9f 9c9e46a d97ac9f 9c9e46a d7896b6 9c9e46a fa7abf4 9c9e46a fa7abf4 9c9e46a d97ac9f 9c9e46a 6aa264c db01582 0751433 9c9e46a 70efebe 7dbc041 fa7abf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# storyverse_weaver/app.py
import gradio as gr
import os
import time
# ... (other imports: json, PIL, random, traceback) ...
# --- Core Logic Imports ---
from core.llm_services import initialize_text_llms, is_gemini_text_ready, is_hf_text_ready, generate_text_gemini, generate_text_hf
# MODIFIED IMPORT for image_services
from core.image_services import initialize_image_llms, is_dalle_ready, is_hf_image_api_ready, generate_image_dalle, generate_image_hf_model, ImageGenResponse
from core.story_engine import Story, Scene
# ... (other core imports: prompts, utils)
from prompts.narrative_prompts import get_narrative_system_prompt, format_narrative_user_prompt
from prompts.image_style_prompts import STYLE_PRESETS, COMMON_NEGATIVE_PROMPTS, format_image_generation_prompt
from core.utils import basic_text_cleanup
# --- Initialize Services ---
initialize_text_llms()
initialize_image_llms()
# --- Get API Readiness Status ---
GEMINI_TEXT_IS_READY = is_gemini_text_ready()
HF_TEXT_IS_READY = is_hf_text_ready() # For text fallback
DALLE_IMAGE_IS_READY = is_dalle_ready() # Primary image status
HF_IMAGE_IS_READY = is_hf_image_api_ready() # For image fallback
# --- Application Configuration (Models, Defaults) ---
TEXT_MODELS = {}
UI_DEFAULT_TEXT_MODEL_KEY = None
if GEMINI_TEXT_IS_READY: # Prioritize Gemini for text
TEXT_MODELS["β¨ Gemini 1.5 Flash (Narrate)"] = {"id": "gemini-1.5-flash-latest", "type": "gemini"}
TEXT_MODELS["Legacy Gemini 1.0 Pro (Narrate)"] = {"id": "gemini-1.0-pro-latest", "type": "gemini"}
UI_DEFAULT_TEXT_MODEL_KEY = "β¨ Gemini 1.5 Flash (Narrate)"
elif HF_TEXT_IS_READY: # Fallback to HF for text
TEXT_MODELS["Mistral 7B (Narrate via HF - Fallback)"] = {"id": "mistralai/Mistral-7B-Instruct-v0.2", "type": "hf_text"}
TEXT_MODELS["Gemma 2B (Narrate via HF - Fallback)"] = {"id": "google/gemma-2b-it", "type": "hf_text"}
UI_DEFAULT_TEXT_MODEL_KEY = "Mistral 7B (Narrate via HF - Fallback)"
if not TEXT_MODELS: # If neither is ready
TEXT_MODELS["No Text Models Configured"] = {"id": "dummy_text_error", "type": "none"}
UI_DEFAULT_TEXT_MODEL_KEY = "No Text Models Configured"
IMAGE_PROVIDERS = {}
UI_DEFAULT_IMAGE_PROVIDER_KEY = None
if DALLE_IMAGE_IS_READY: # Prioritize DALL-E for images
IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 3"] = "dalle_3" # Key for DALL-E 3
IMAGE_PROVIDERS["πΌοΈ OpenAI DALL-E 2 (Legacy)"] = "dalle_2" # Key for DALL-E 2
UI_DEFAULT_IMAGE_PROVIDER_KEY = "πΌοΈ OpenAI DALL-E 3"
elif HF_IMAGE_IS_READY: # Fallback to HF for images
IMAGE_PROVIDERS["π‘ HF - Stable Diffusion XL Base (Fallback)"] = "hf_sdxl_base"
IMAGE_PROVIDERS["π HF - OpenJourney (Fallback)"] = "hf_openjourney"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "π‘ HF - Stable Diffusion XL Base (Fallback)"
if not IMAGE_PROVIDERS:
IMAGE_PROVIDERS["No Image Providers Configured"] = "none"
UI_DEFAULT_IMAGE_PROVIDER_KEY = "No Image Providers Configured"
# ... (Theme, CSS, create_placeholder_image - REMAINS THE SAME as previous full app.py) ...
omega_theme = gr.themes.Base(font=[gr.themes.GoogleFont("Lexend Deca")], primary_hue=gr.themes.colors.purple).set(body_background_fill="#0F0F1A", block_background_fill="#1A1A2E", slider_color="#A020F0")
omega_css = "body, .gradio-container { background-color: #0F0F1A !important; color: #D0D0E0 !important; } /* Ensure this is complete */"
def create_placeholder_image(text="Processing...", size=(512, 512), color="#23233A", text_color="#E0E0FF"): # Keep this
img = Image.new('RGB', size, color=color); draw = ImageDraw.Draw(img); #... (full implementation)
try: font_path = "arial.ttf" if os.path.exists("arial.ttf") else None
except: font_path = None
try: font = ImageFont.truetype(font_path, 40) if font_path else ImageFont.load_default()
except IOError: font = ImageFont.load_default()
if hasattr(draw, 'textbbox'): bbox = draw.textbbox((0,0), text, font=font); tw, th = bbox[2]-bbox[0], bbox[3]-bbox[1]
else: tw, th = draw.textsize(text, font=font)
draw.text(((size[0]-tw)/2, (size[1]-th)/2), text, font=font, fill=text_color); return img
# --- StoryVerse Weaver Orchestrator (MODIFIED image generation part) ---
def add_scene_to_story_orchestrator(
current_story_obj: Story, scene_prompt_text: str, image_style_dropdown: str, artist_style_text: str,
negative_prompt_text: str, text_model_key: str, image_provider_key: str, # image_provider_key now maps to DALL-E or HF
narrative_length: str, image_quality: str,
progress=gr.Progress(track_tqdm=True)
):
start_time = time.time()
if not current_story_obj: current_story_obj = Story()
log_accumulator = [f"**π Scene {current_story_obj.current_scene_number + 1} - {time.strftime('%H:%M:%S')}**"]
# ... (Initialize ret_... placeholders as before) ...
ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md = \
current_story_obj, current_story_obj.get_all_scenes_for_gallery_display(), None, gr.Markdown("Processing..."), gr.HTML("<p>Processing...</p>"), gr.Markdown("\n".join(log_accumulator))
# Initial yield
yield {
output_status_bar: gr.HTML(value=f"<p class='processing_text status_text'>π Weaving Scene {current_story_obj.current_scene_number + 1}...</p>"),
# ... (other initial yields)
output_latest_scene_image: gr.Image(value=create_placeholder_image("π¨ Conjuring visuals...")),
output_latest_scene_narrative: gr.Markdown(value=" Musing narrative..."),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator))
}
# Note: Button disabling/enabling is handled by the .then() chain in UI definition
try:
if not scene_prompt_text.strip(): raise ValueError("Scene prompt cannot be empty!")
# --- 1. Generate Narrative Text (using Gemini or HF fallback) ---
progress(0.1, desc="βοΈ Crafting narrative...")
# ... (Full narrative generation logic from previous app.py, which already handles Gemini/HF choice) ...
# ... (This part should be copied from your last working version) ...
narrative_text_generated = "Simulated Narrative." # Placeholder
text_model_info = TEXT_MODELS.get(text_model_key)
if text_model_info and text_model_info["type"] != "none":
system_p = get_narrative_system_prompt("default"); prev_narrative = current_story_obj.get_last_scene_narrative(); user_p = format_narrative_user_prompt(scene_prompt_text, prev_narrative)
log_accumulator.append(f" Narrative: Using {text_model_key} ({text_model_info['id']}).")
text_response = None
if text_model_info["type"] == "gemini": text_response = generate_text_gemini(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
elif text_model_info["type"] == "hf_text": text_response = generate_text_hf(user_p, model_id=text_model_info["id"], system_prompt=system_p, max_tokens=768 if narrative_length.startswith("Detailed") else 400)
if text_response and text_response.success: narrative_text_generated = basic_text_cleanup(text_response.text); log_accumulator.append(f" Narrative: Success.")
elif text_response: narrative_text_generated = f"**Narrative Error ({text_model_key}):** {text_response.error}"; log_accumulator.append(f" Narrative: FAILED - {text_response.error}")
else: log_accumulator.append(f" Narrative: FAILED - No response from {text_model_key}.")
else: narrative_text_generated = "**Narrative Error:** Text model unavailable."; log_accumulator.append(f" Narrative: FAILED - Model '{text_model_key}' unavailable.")
ret_latest_narrative_str_content = f"## Scene Idea: {scene_prompt_text}\n\n{narrative_text_generated}"
ret_latest_narrative_md_obj = gr.Markdown(value=ret_latest_narrative_str_content)
yield { output_latest_scene_narrative: ret_latest_narrative_md_obj, output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 2. Generate Image (NOW USING DALL-E or HF fallback) ---
progress(0.5, desc="π¨ Conjuring visuals...")
image_generated_pil = None
image_generation_error_message = None
selected_image_provider_actual_type = IMAGE_PROVIDERS.get(image_provider_key) # e.g., "dalle_3", "hf_sdxl_base"
image_content_prompt_for_gen = narrative_text_generated if narrative_text_generated and "Error" not in narrative_text_generated else scene_prompt_text
quality_keyword = "detailed, high quality, " if image_quality == "High Detail" else "" # Simpler quality keyword
full_image_prompt = format_image_generation_prompt(quality_keyword + image_content_prompt_for_gen[:350], image_style_dropdown, artist_style_text)
log_accumulator.append(f" Image: Attempting with provider key '{image_provider_key}' (maps to type '{selected_image_provider_actual_type}'). Style: {image_style_dropdown}.")
if selected_image_provider_actual_type and selected_image_provider_actual_type != "none":
image_response = None
if selected_image_provider_actual_type == "dalle_3":
if DALLE_IMAGE_IS_READY:
image_response = generate_image_dalle(full_image_prompt, model="dall-e-3", quality="hd" if image_quality=="High Detail" else "standard")
else: image_generation_error_message = "**Image Error:** DALL-E 3 selected but API not ready."
elif selected_image_provider_actual_type == "dalle_2":
if DALLE_IMAGE_IS_READY:
image_response = generate_image_dalle(full_image_prompt, model="dall-e-2", size="1024x1024") # DALL-E 2 has fixed sizes
else: image_generation_error_message = "**Image Error:** DALL-E 2 selected but API not ready."
# Fallback to HF models if DALL-E not selected or not ready, but HF is
elif selected_image_provider_actual_type.startswith("hf_"):
if HF_IMAGE_IS_READY:
hf_model_id_to_call = "stabilityai/stable-diffusion-xl-base-1.0" # Default HF
img_width, img_height = 768, 768
if selected_image_provider_actual_type == "hf_openjourney": hf_model_id_to_call = "prompthero/openjourney"; img_width,img_height = 512,512
elif selected_image_provider_actual_type == "hf_sd_1_5": hf_model_id_to_call = "runwayml/stable-diffusion-v1-5"; img_width,img_height = 512,512
image_response = generate_image_hf_model(full_image_prompt, model_id=hf_model_id_to_call, negative_prompt=negative_prompt_text or COMMON_NEGATIVE_PROMPTS, width=img_width, height=img_height)
else: image_generation_error_message = "**Image Error:** HF Image Model selected but API not ready."
else: image_generation_error_message = f"**Image Error:** Provider type '{selected_image_provider_actual_type}' not handled."
if image_response and image_response.success: image_generated_pil = image_response.image; log_accumulator.append(f" Image: Success from {image_response.provider} (Model: {image_response.model_id_used}).")
elif image_response: image_generation_error_message = f"**Image Error ({image_response.provider} - {image_response.model_id_used}):** {image_response.error}"; log_accumulator.append(f" Image: FAILED - {image_response.error}")
elif not image_generation_error_message: image_generation_error_message = f"**Image Error:** No response/unknown issue with {image_provider_key}."; log_accumulator.append(f" Image: FAILED - No response object.")
if not image_generated_pil and not image_generation_error_message: # If neither DALL-E nor HF was selected/ready
image_generation_error_message = "**Image Error:** No valid image provider configured or selected."
log_accumulator.append(f" Image: FAILED - {image_generation_error_message}")
ret_latest_image = image_generated_pil if image_generated_pil else create_placeholder_image("Image Gen Failed", color="#401010")
yield { output_latest_scene_image: gr.Image(value=ret_latest_image),
output_interaction_log_markdown: gr.Markdown(value="\n".join(log_accumulator)) }
# --- 3. Add Scene to Story Object & 4. Prepare Final Return Values ---
# ... (This part remains largely the same as the previous full app.py) ...
final_scene_error=None; # ... (set based on narrative/image errors) ...
current_story_obj.add_scene_from_elements(user_prompt=scene_prompt_text, narrative_text=narrative_text_generated, image=image_generated_pil, image_style_prompt=f"{image_style_dropdown} by {artist_style_text}", image_provider=image_provider_key, error_message=final_scene_error)
ret_story_state = current_story_obj; log_accumulator.append(f" Scene {current_story_obj.current_scene_number} processed.")
ret_gallery = current_story_obj.get_all_scenes_for_gallery_display()
_ , latest_narr_for_display_final_str_temp = current_story_obj.get_latest_scene_details_for_display()
ret_latest_narrative_md_obj = gr.Markdown(value=latest_narr_for_display_final_str_temp)
status_html_str_temp = f"<p class='error_text'>Scene added with errors.</p>" if final_scene_error else f"<p class='success_text'>π Scene woven!</p>"
ret_status_bar_html_obj = gr.HTML(value=status_html_str_temp)
progress(1.0, desc="Scene Complete!")
except ValueError as ve: # ... (Error handling as before) ...
log_accumulator.append(f"\n**INPUT ERROR:** {ve}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>ERROR: {ve}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Error\n{ve}")
except Exception as e: # ... (Error handling as before) ...
log_accumulator.append(f"\n**RUNTIME ERROR:** {e}\n{traceback.format_exc()}"); ret_status_bar_html_obj = gr.HTML(f"<p class='error_text'>UNEXPECTED ERROR: {e}</p>"); ret_latest_narrative_md_obj = gr.Markdown(f"## Unexpected Error\n{e}")
current_total_time = time.time() - start_time
log_accumulator.append(f" Cycle ended. Total time: {current_total_time:.2f}s")
ret_log_md = gr.Markdown(value="\n".join(log_accumulator))
return (ret_story_state, ret_gallery, ret_latest_image, ret_latest_narrative_md_obj, ret_status_bar_html_obj, ret_log_md)
# --- clear_story_state_ui_wrapper, surprise_me_func, disable_buttons_for_processing, enable_buttons_after_processing ---
# (These functions remain IDENTICAL to the ones in the last full app.py that fixed the ValueError)
def clear_story_state_ui_wrapper(): new_story=Story(); ph_img=create_placeholder_image("Blank..."); return(new_story,[(ph_img,"New...")],None,gr.Markdown("## Cleared"),gr.HTML("<p>Cleared.</p>"),"Log Cleared","")
def surprise_me_func(): themes = ["Cosmic Horror", "Solarpunk"]; actions = ["unearths artifact", "negotiates"]; settings = ["on rogue planet", "in tree city"]; prompt = f"Protagonist {random.choice(actions)} {random.choice(settings)}. Theme: {random.choice(themes)}."; style = random.choice(list(STYLE_PRESETS.keys())); artist = random.choice(["Giger", "Moebius", ""]*2); return prompt, style, artist
def disable_buttons_for_processing(): return gr.Button(interactive=False), gr.Button(interactive=False)
def enable_buttons_after_processing(): return gr.Button(interactive=True), gr.Button(interactive=True)
# --- Gradio UI Definition ---
with gr.Blocks(theme=omega_theme, css=omega_css, title="β¨ StoryVerse Omega β¨") as story_weaver_demo:
story_state_output = gr.State(Story())
# ... (Full UI layout from the previous app.py - "rewrite app.py with update")
# ... (This includes defining all component variables like scene_prompt_input, output_gallery, engage_button etc. IN THE LAYOUT)
# Ensure the image_provider_dropdown choices and default reflect DALL-E and HF
gr.Markdown("<div align='center'><h1>β¨ StoryVerse Omega β¨</h1>\n<h3>Craft Immersive Multimodal Worlds with AI</h3></div>")
gr.HTML("<div class='important-note'><strong>Welcome, Worldsmith!</strong> ... API keys (<code>STORYVERSE_...</code>) ...</div>")
with gr.Accordion("π§ AI Services Status & Info", open=False):
status_text_list = []; text_llm_ok = (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY); image_gen_ok = (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY)
if not text_llm_ok and not image_gen_ok: status_text_list.append("<p style='color:#FCA5A5;font-weight:bold;'>β οΈ CRITICAL: NO AI SERVICES CONFIGURED.</p>")
else:
if text_llm_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Text Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Text Generation NOT Ready.</p>")
if image_gen_ok: status_text_list.append("<p style='color:#A7F3D0;'>β
Image Generation Ready.</p>")
else: status_text_list.append("<p style='color:#FCD34D;'>β οΈ Image Generation NOT Ready.</p>")
gr.HTML("".join(status_text_list))
with gr.Row(equal_height=False, variant="panel"):
with gr.Column(scale=7, min_width=450):
gr.Markdown("### π‘ **Craft Your Scene**", elem_classes="input-section-header")
with gr.Group(): scene_prompt_input = gr.Textbox(lines=7, label="Scene Vision:", placeholder="e.g., Amidst swirling cosmic dust...")
with gr.Row(elem_classes=["compact-row"]):
with gr.Column(scale=2): image_style_input = gr.Dropdown(choices=["Default (Cinematic Realism)"] + sorted(list(STYLE_PRESETS.keys())), value="Default (Cinematic Realism)", label="Visual Style Preset", allow_custom_value=True)
with gr.Column(scale=2): artist_style_input = gr.Textbox(label="Artistic Inspiration (Optional):", placeholder="e.g., Moebius...")
negative_prompt_input = gr.Textbox(lines=2, label="Exclude from Image:", value=COMMON_NEGATIVE_PROMPTS)
with gr.Accordion("βοΈ Advanced AI Configuration", open=False):
with gr.Group():
text_model_dropdown = gr.Dropdown(choices=list(TEXT_MODELS.keys()), value=UI_DEFAULT_TEXT_MODEL_KEY, label="Narrative AI Engine")
image_provider_dropdown = gr.Dropdown(choices=list(IMAGE_PROVIDERS.keys()), value=UI_DEFAULT_IMAGE_PROVIDER_KEY, label="Visual AI Engine") # Updated choices
with gr.Row():
narrative_length_dropdown = gr.Dropdown(["Short", "Medium", "Detailed"], value="Medium", label="Narrative Detail")
image_quality_dropdown = gr.Dropdown(["Standard", "High Detail", "Sketch"], value="Standard", label="Image Detail")
with gr.Row(elem_classes=["compact-row"], equal_height=True):
engage_button = gr.Button("π Weave Scene!", variant="primary", scale=3, icon="β¨")
surprise_button = gr.Button("π² Surprise!", variant="secondary", scale=1, icon="π")
clear_story_button = gr.Button("ποΈ New", variant="stop", scale=1, icon="β»οΈ")
output_status_bar = gr.HTML(value="<p class='processing_text status_text'>Ready to weave!</p>")
with gr.Column(scale=10, min_width=700):
gr.Markdown("### πΌοΈ **Your StoryVerse**", elem_classes="output-section-header")
with gr.Tabs():
with gr.TabItem("π Latest Scene"): output_latest_scene_image = gr.Image(label="Latest Image", type="pil", interactive=False, height=512, show_label=False); output_latest_scene_narrative = gr.Markdown()
with gr.TabItem("π Story Scroll"): output_gallery = gr.Gallery(label="Story Scroll", show_label=False, columns=4, object_fit="cover", height=700, preview=True)
with gr.TabItem("βοΈ Log"):
with gr.Accordion("Interaction Log", open=False): output_interaction_log_markdown = gr.Markdown("Log...")
# Event Handlers (same .then() chain as before)
engage_button.click(fn=disable_buttons_for_processing, outputs=[engage_button, surprise_button], queue=False)\
.then(fn=add_scene_to_story_orchestrator, inputs=[story_state_output, scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input, text_model_dropdown, image_provider_dropdown, narrative_length_dropdown, image_quality_dropdown], outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown])\
.then(fn=enable_buttons_after_processing, outputs=[engage_button, surprise_button], queue=False)
clear_story_button.click(fn=clear_story_state_ui_wrapper, outputs=[story_state_output, output_gallery, output_latest_scene_image, output_latest_scene_narrative, output_status_bar, output_interaction_log_markdown, scene_prompt_input])
surprise_button.click(fn=surprise_me_func, outputs=[scene_prompt_input, image_style_input, artist_style_input])
gr.Examples(examples=[["Traveler in desert...", "Sci-Fi Western", "Moebius", "greenery"]], inputs=[scene_prompt_input, image_style_input, artist_style_input, negative_prompt_input], label="π Examples π")
gr.HTML("<p style='text-align:center; font-size:0.9em; color:#8080A0;'>β¨ StoryVerse Omegaβ’ β¨</p>")
# --- Entry Point ---
if __name__ == "__main__":
print("="*80); print("β¨ StoryVerse Omega (DALL-E/Gemini Focus) Launching... β¨")
print(f" Gemini Text Ready: {GEMINI_TEXT_IS_READY}"); print(f" HF Text Ready: {HF_TEXT_IS_READY}")
print(f" DALL-E Image Ready: {DALLE_IMAGE_IS_READY}"); print(f" HF Image Ready: {HF_IMAGE_IS_READY}") # Check both
if not (GEMINI_TEXT_IS_READY or HF_TEXT_IS_READY) or not (DALLE_IMAGE_IS_READY or HF_IMAGE_IS_READY): print(" π΄ WARNING: Not all services configured.")
print(f" Default Text Model: {UI_DEFAULT_TEXT_MODEL_KEY}"); print(f" Default Image Provider: {UI_DEFAULT_IMAGE_PROVIDER_KEY}")
print("="*80)
story_weaver_demo.launch(debug=True, server_name="0.0.0.0", share=False) |