File size: 34,263 Bytes
788074d
 
 
4258926
896de2d
 
63b0a52
4258926
 
 
 
 
9c32b8a
4258926
 
fc636ce
4258926
896de2d
4258926
896de2d
4258926
896de2d
 
 
 
4258926
896de2d
4258926
 
896de2d
4258926
 
 
 
896de2d
 
4258926
896de2d
4258926
896de2d
 
 
 
4258926
 
 
896de2d
 
4258926
 
 
896de2d
 
4258926
 
896de2d
 
4258926
 
 
 
 
896de2d
 
4258926
 
896de2d
4258926
 
 
 
896de2d
 
 
4258926
 
 
896de2d
 
 
 
4258926
896de2d
 
 
 
 
 
 
4258926
 
 
 
 
 
896de2d
4258926
 
896de2d
 
4258926
 
 
896de2d
4258926
 
896de2d
 
 
4258926
 
 
 
 
896de2d
 
 
 
 
 
 
 
4258926
896de2d
 
 
 
 
 
 
 
 
 
 
 
4258926
 
896de2d
 
 
 
 
 
 
 
 
 
 
4258926
 
896de2d
4258926
 
896de2d
 
4258926
 
896de2d
 
 
 
 
 
4258926
 
 
 
896de2d
4258926
896de2d
4258926
 
 
 
 
896de2d
 
 
 
 
 
 
 
 
4258926
 
 
896de2d
 
4258926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
4258926
 
896de2d
4258926
 
 
 
 
 
 
 
 
896de2d
4258926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
4258926
896de2d
 
4258926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
4258926
 
 
896de2d
4258926
 
 
 
 
 
896de2d
9c32b8a
4258926
 
788074d
896de2d
4258926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896de2d
 
 
 
4258926
b564942
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver # For state persistence (optional but good)

from typing import Optional, List, Dict, Any, TypedDict, Annotated
import json
import re
import operator

# --- Configuration & Constants --- (Keep previous ones like ClinicalAppSettings)
class ClinicalAppSettings:
    APP_TITLE = "SynapseAI: Interactive Clinical Decision Support"
    PAGE_LAYOUT = "wide"
    MODEL_NAME = "llama3-70b-8192"
    TEMPERATURE = 0.1
    MAX_SEARCH_RESULTS = 3

class ClinicalPrompts:
    # UPDATED SYSTEM PROMPT FOR CONVERSATIONAL FLOW & GUIDELINES
    SYSTEM_PROMPT = """
    You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation.
    Your goal is to support healthcare professionals by analyzing patient data, providing differential diagnoses, suggesting evidence-based management plans, and identifying risks according to current standards of care.

    **Core Directives for this Conversation:**
    1.  **Analyze Sequentially:** Process information turn-by-turn. You will receive initial patient data, and potentially follow-up messages or results from tools you requested. Base your responses on the *entire* conversation history.
    2.  **Seek Clarity:** If the provided information is insufficient or ambiguous for a safe assessment, CLEARLY STATE what specific additional information or clarification is needed. Do NOT guess or make unsafe assumptions.
    3.  **Structured Assessment (When Ready):** When you have sufficient information and have performed necessary checks (like interactions), provide a comprehensive assessment using the following JSON structure. Only output this structure when you believe you have a complete initial analysis or plan. Do NOT output incomplete JSON.
        ```json
        {
          "assessment": "Concise summary of the patient's presentation and key findings based on the conversation.",
          "differential_diagnosis": [
            {"diagnosis": "Primary Diagnosis", "likelihood": "High/Medium/Low", "rationale": "Supporting evidence from conversation..."},
            {"diagnosis": "Alternative Diagnosis 1", "likelihood": "Medium/Low", "rationale": "Supporting/Refuting evidence..."},
            {"diagnosis": "Alternative Diagnosis 2", "likelihood": "Low", "rationale": "Why it's less likely but considered..."}
          ],
          "risk_assessment": {
            "identified_red_flags": ["List any triggered red flags"],
            "immediate_concerns": ["Specific urgent issues (e.g., sepsis risk, ACS rule-out)"],
            "potential_complications": ["Possible future issues"]
          },
          "recommended_plan": {
            "investigations": ["List specific lab tests or imaging needed. Use 'order_lab_test' tool."],
            "therapeutics": ["Suggest specific treatments/prescriptions. Use 'prescribe_medication' tool. MUST check interactions first."],
            "consultations": ["Recommend specialist consultations."],
            "patient_education": ["Key points for patient communication."]
          },
          "rationale_summary": "Justification for assessment/plan. **Crucially, if relevant (e.g., ACS, sepsis, common infections), use 'tavily_search_results' to find and cite current clinical practice guidelines (e.g., 'latest ACC/AHA chest pain guidelines 202X', 'Surviving Sepsis Campaign guidelines') supporting your recommendations.**",
          "interaction_check_summary": "Summary of findings from 'check_drug_interactions' if performed."
        }
        ```
    4.  **Safety First - Interactions:** BEFORE suggesting a new prescription via `prescribe_medication`, you MUST FIRST use `check_drug_interactions`. Report the findings. If interactions exist, modify the plan or state the contraindication.
    5.  **Safety First - Red Flags:** Use the `flag_risk` tool IMMEDIATELY if critical red flags requiring urgent action are identified at any point.
    6.  **Tool Use:** Employ tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`, `flag_risk`, `tavily_search_results`) logically within the conversational flow. Wait for tool results before proceeding if the result is needed for the next step (e.g., wait for interaction check before confirming prescription).
    7.  **Evidence & Guidelines:** Actively use `tavily_search_results` not just for general knowledge, but specifically to query for and incorporate **current clinical practice guidelines** relevant to the patient's presentation (e.g., chest pain, shortness of breath, suspected infection). Summarize findings in the `rationale_summary` when providing the structured output.
    8.  **Conciseness:** Be medically accurate and concise. Use standard terminology. Respond naturally in conversation until ready for the full structured JSON output.
    """

# --- Mock Data / Helpers --- (Keep previous ones like MOCK_INTERACTION_DB, ALLERGY_INTERACTIONS, parse_bp, check_red_flags)
# (Include the helper functions from the previous response here)
MOCK_INTERACTION_DB = {
    ("lisinopril", "spironolactone"): "High risk of hyperkalemia. Monitor potassium closely.",
    ("warfarin", "amiodarone"): "Increased bleeding risk. Monitor INR frequently and adjust Warfarin dose.",
    ("simvastatin", "clarithromycin"): "Increased risk of myopathy/rhabdomyolysis. Avoid combination or use lower statin dose.",
    ("aspirin", "ibuprofen"): "Concurrent use may decrease Aspirin's cardioprotective effect. Potential for increased GI bleeding."
}

ALLERGY_INTERACTIONS = {
    "penicillin": ["amoxicillin", "ampicillin", "piperacillin"],
    "sulfa": ["sulfamethoxazole", "sulfasalazine"],
    "aspirin": ["ibuprofen", "naproxen"] # Cross-reactivity example for NSAIDs
}

def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
    match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string)
    if match: return int(match.group(1)), int(match.group(2))
    return None

def check_red_flags(patient_data: dict) -> List[str]:
    flags = []
    symptoms = patient_data.get("hpi", {}).get("symptoms", [])
    vitals = patient_data.get("vitals", {})
    history = patient_data.get("pmh", {}).get("conditions", "")
    symptoms_lower = [s.lower() for s in symptoms]

    if "chest pain" in symptoms_lower: flags.append("Red Flag: Chest Pain reported.")
    if "shortness of breath" in symptoms_lower: flags.append("Red Flag: Shortness of Breath reported.")
    if "severe headache" in symptoms_lower: flags.append("Red Flag: Severe Headache reported.")
    # Add other symptom checks...

    if "temp_c" in vitals and vitals["temp_c"] >= 38.5: flags.append(f"Red Flag: Fever ({vitals['temp_c']}Β°C).")
    if "hr_bpm" in vitals and vitals["hr_bpm"] >= 120: flags.append(f"Red Flag: Tachycardia ({vitals['hr_bpm']} bpm).")
    if "bp_mmhg" in vitals:
        bp = parse_bp(vitals["bp_mmhg"])
        if bp and (bp[0] >= 180 or bp[1] >= 110): flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {vitals['bp_mmhg']} mmHg).")
        if bp and (bp[0] <= 90 or bp[1] <= 60): flags.append(f"Red Flag: Hypotension (BP: {vitals['bp_mmhg']} mmHg).")
    # Add other vital checks...

    if "history of mi" in history.lower() and "chest pain" in symptoms_lower: flags.append("Red Flag: History of MI with current Chest Pain.")
    # Add other history checks...
    return flags


# --- Enhanced Tool Definitions --- (Keep previous Pydantic models and @tool functions)
# (Include LabOrderInput, PrescriptionInput, InteractionCheckInput, FlagRiskInput
# and the corresponding @tool functions: order_lab_test, prescribe_medication,
# check_drug_interactions, flag_risk from the previous response here)

class LabOrderInput(BaseModel):
    test_name: str = Field(..., description="Specific name of the lab test or panel (e.g., 'CBC', 'BMP', 'Troponin I', 'Urinalysis').")
    reason: str = Field(..., description="Clinical justification for ordering the test (e.g., 'Rule out infection', 'Assess renal function', 'Evaluate for ACS').")
    priority: str = Field("Routine", description="Priority of the test (e.g., 'STAT', 'Routine').")

@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
    """Orders a specific lab test with clinical justification and priority."""
    return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"})

class PrescriptionInput(BaseModel):
    medication_name: str = Field(..., description="Name of the medication.")
    dosage: str = Field(..., description="Dosage amount and unit (e.g., '500 mg', '10 mg').")
    route: str = Field(..., description="Route of administration (e.g., 'PO', 'IV', 'IM', 'Topical').")
    frequency: str = Field(..., description="How often the medication should be taken (e.g., 'BID', 'QDaily', 'Q4-6H PRN').")
    duration: str = Field("As directed", description="Duration of treatment (e.g., '7 days', '1 month', 'Until follow-up').")
    reason: str = Field(..., description="Clinical indication for the prescription.")

@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
    """Prescribes a medication with detailed instructions and clinical indication."""
    # NOTE: Interaction check should have been done *before* calling this via a separate tool call
    return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"})

class InteractionCheckInput(BaseModel):
    potential_prescription: str = Field(..., description="The name of the NEW medication being considered.")
    current_medications: List[str] = Field(..., description="List of the patient's CURRENT medication names.")
    allergies: List[str] = Field(..., description="List of the patient's known allergies.")

@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: List[str], allergies: List[str]) -> str:
    """Checks for potential drug-drug and drug-allergy interactions BEFORE prescribing."""
    warnings = []
    potential_med_lower = potential_prescription.lower()
    current_meds_lower = [med.lower() for med in current_medications]
    allergies_lower = [a.lower() for a in allergies]

    for allergy in allergies_lower:
        if allergy == potential_med_lower:
            warnings.append(f"CRITICAL ALLERGY: Patient allergic to {allergy}. Cannot prescribe {potential_prescription}.")
            continue
        if allergy in ALLERGY_INTERACTIONS:
            for cross_reactant in ALLERGY_INTERACTIONS[allergy]:
                if cross_reactant.lower() == potential_med_lower:
                    warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to {allergy}. High risk with {potential_prescription}.")

    for current_med in current_meds_lower:
        pair1 = (current_med, potential_med_lower)
        pair2 = (potential_med_lower, current_med)
        # Normalize keys for lookup if necessary (e.g., if DB keys are canonical names)
        key1 = tuple(sorted(pair1))
        key2 = tuple(sorted(pair2)) # Although redundant if always sorted

        if pair1 in MOCK_INTERACTION_DB:
            warnings.append(f"Interaction: {potential_prescription.capitalize()} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair1]}")
        elif pair2 in MOCK_INTERACTION_DB:
             warnings.append(f"Interaction: {potential_prescription.capitalize()} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair2]}")

    status = "warning" if warnings else "clear"
    message = f"Interaction check for {potential_prescription}: {len(warnings)} potential issue(s) found." if warnings else f"No major interactions identified for {potential_prescription}."
    return json.dumps({"status": status, "message": message, "warnings": warnings})


class FlagRiskInput(BaseModel):
    risk_description: str = Field(..., description="Specific critical risk identified (e.g., 'Suspected Sepsis', 'Acute Coronary Syndrome', 'Stroke Alert').")
    urgency: str = Field("High", description="Urgency level (e.g., 'Critical', 'High', 'Moderate').")

@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
    """Flags a critical risk identified during analysis for immediate attention."""
    # Display in Streamlit immediately
    st.error(f"🚨 **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="🚨")
    return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."})

# Initialize Search Tool
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")


# --- LangGraph Setup ---

# Define the state structure
class AgentState(TypedDict):
    messages: Annotated[list[Any], operator.add] # Accumulates messages (Human, AI, Tool)
    patient_data: Optional[dict] # Holds the structured patient data (can be updated if needed)
    # Potentially add other state elements like 'interaction_check_needed_for': Optional[str]

# Define Tools and Tool Executor
tools = [
    order_lab_test,
    prescribe_medication,
    check_drug_interactions,
    flag_risk,
    search_tool
]
tool_executor = ToolExecutor(tools)

# Define the Agent Model
model = ChatGroq(
    temperature=ClinicalAppSettings.TEMPERATURE,
    model=ClinicalAppSettings.MODEL_NAME
)
model_with_tools = model.bind_tools(tools) # Bind tools for the LLM to know about them

# --- Graph Nodes ---

# 1. Agent Node: Calls the LLM
def agent_node(state: AgentState):
    """Invokes the LLM to decide the next action or response."""
    print("---AGENT NODE---")
    # Make sure patient data is included in the first message if not already there
    # This is a basic way; more robust would be merging patient_data into context
    current_messages = state['messages']
    if len(current_messages) == 1 and isinstance(current_messages[0], HumanMessage) and state.get('patient_data'):
         # Augment the first human message with formatted patient data
         formatted_data = format_patient_data_for_prompt(state['patient_data']) # Need this helper function
         current_messages = [
             SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT), # Ensure system prompt is first
             HumanMessage(content=f"{current_messages[0].content}\n\n**Initial Patient Data:**\n{formatted_data}")
         ]
    elif not any(isinstance(m, SystemMessage) for m in current_messages):
         # Add system prompt if missing
         current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages


    response = model_with_tools.invoke(current_messages)
    print(f"Agent response: {response}")
    return {"messages": [response]}

# 2. Tool Node: Executes tools called by the Agent
def tool_node(state: AgentState):
    """Executes tools called by the LLM and returns results."""
    print("---TOOL NODE---")
    last_message = state['messages'][-1]
    if not isinstance(last_message, AIMessage) or not last_message.tool_calls:
        print("No tool calls in last message.")
        return {} # Should not happen if routing is correct, but safety check

    tool_calls = last_message.tool_calls
    tool_messages = []

    # Safety Check: Ensure interaction check happens *before* prescribing the *same* drug
    prescribe_calls = {call['args'].get('medication_name'): call['id'] for call in tool_calls if call['name'] == 'prescribe_medication'}
    interaction_check_calls = {call['args'].get('potential_prescription'): call['id'] for call in tool_calls if call['name'] == 'check_drug_interactions'}

    for med_name, prescribe_call_id in prescribe_calls.items():
        if med_name not in interaction_check_calls:
            st.error(f"**Safety Violation:** AI attempted to prescribe '{med_name}' without requesting `check_drug_interactions` in the *same turn*. Prescription blocked for this turn.")
            # Create an error ToolMessage to send back to the LLM
            error_msg = ToolMessage(
                content=json.dumps({"status": "error", "message": f"Interaction check for {med_name} must be requested *before or alongside* the prescription call."}),
                tool_call_id=prescribe_call_id
            )
            tool_messages.append(error_msg)
            # Remove the invalid prescribe call to prevent execution
            tool_calls = [call for call in tool_calls if call['id'] != prescribe_call_id]


    # Add patient context to interaction checks if needed
    patient_meds = state.get("patient_data", {}).get("medications", {}).get("names_only", [])
    patient_allergies = state.get("patient_data", {}).get("allergies", [])
    for call in tool_calls:
         if call['name'] == 'check_drug_interactions':
             call['args']['current_medications'] = patient_meds
             call['args']['allergies'] = patient_allergies
             print(f"Augmented interaction check args: {call['args']}")


    # Execute remaining valid tool calls
    if tool_calls:
        responses = tool_executor.batch(tool_calls)
        # Responses is a list of tool outputs corresponding to tool_calls
        # We need to create ToolMessage objects
        tool_messages.extend([
            ToolMessage(content=str(resp), tool_call_id=call['id'])
            for call, resp in zip(tool_calls, responses)
        ])
        print(f"Tool results: {tool_messages}")

    return {"messages": tool_messages}


# --- Graph Edges (Routing Logic) ---
def should_continue(state: AgentState) -> str:
    """Determines whether to continue the loop or end."""
    last_message = state['messages'][-1]
    # If the LLM made tool calls, we execute them
    if isinstance(last_message, AIMessage) and last_message.tool_calls:
        print("Routing: continue_tools")
        return "continue_tools"
    # Otherwise, we end the loop (AI provided a direct answer or finished)
    else:
        print("Routing: end_conversation_turn")
        return "end_conversation_turn"

# --- Graph Definition ---
workflow = StateGraph(AgentState)

# Add nodes
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)

# Define entry point
workflow.set_entry_point("agent")

# Add conditional edges
workflow.add_conditional_edges(
    "agent",                      # Source node
    should_continue,              # Function to decide the route
    {
        "continue_tools": "tools", # If tool calls exist, go to tools node
        "end_conversation_turn": END # Otherwise, end the graph iteration
    }
)

# Add edge from tools back to agent
workflow.add_edge("tools", "agent")

# Compile the graph
# memory = MemorySaverInMemory() # Optional: for persisting state across runs
# app = workflow.compile(checkpointer=memory)
app = workflow.compile()

# --- Helper Function to Format Patient Data ---
def format_patient_data_for_prompt(data: dict) -> str:
    """Formats the patient dictionary into a readable string for the LLM."""
    prompt_str = ""
    for key, value in data.items():
        if isinstance(value, dict):
            section_title = key.replace('_', ' ').title()
            prompt_str += f"**{section_title}:**\n"
            for sub_key, sub_value in value.items():
                 if sub_value:
                    prompt_str += f"  - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
        elif isinstance(value, list) and value:
             prompt_str += f"**{key.replace('_', ' ').title()}:** {', '.join(map(str, value))}\n"
        elif value:
             prompt_str += f"**{key.replace('_', ' ').title()}:** {value}\n"
    return prompt_str.strip()

# --- Streamlit UI (Modified for Conversation) ---
def main():
    st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
    st.title(f"🩺 {ClinicalAppSettings.APP_TITLE}")
    st.caption(f"Interactive Assistant | Powered by Langchain/LangGraph & Groq ({ClinicalAppSettings.MODEL_NAME})")

    # Initialize session state for conversation
    if "messages" not in st.session_state:
        st.session_state.messages = [] # Store entire conversation history (Human, AI, Tool)
    if "patient_data" not in st.session_state:
        st.session_state.patient_data = None
    if "initial_analysis_done" not in st.session_state:
        st.session_state.initial_analysis_done = False
    if "graph_app" not in st.session_state:
        st.session_state.graph_app = app # Store compiled graph

    # --- Patient Data Input Sidebar --- (Similar to before)
    with st.sidebar:
        st.header("πŸ“„ Patient Intake Form")
        # ... (Keep the input fields exactly as in the previous example) ...
        # Demographics
        age = st.number_input("Age", min_value=0, max_value=120, value=55, key="age_input")
        sex = st.selectbox("Biological Sex", ["Male", "Female", "Other/Prefer not to say"], key="sex_input")
        # HPI
        chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="cc_input")
        hpi_details = st.text_area("Detailed HPI", "55 y/o male presents with substernal chest pain started 2 hours ago...", key="hpi_input")
        symptoms = st.multiselect("Associated Symptoms", ["Nausea", "Diaphoresis", "Shortness of Breath", "Dizziness", "Palpitations", "Fever", "Cough"], default=["Nausea", "Diaphoresis"], key="sym_input")
        # History
        pmh = st.text_area("Past Medical History (PMH)", "Hypertension (HTN), Hyperlipidemia (HLD), Type 2 Diabetes Mellitus (DM2)", key="pmh_input")
        psh = st.text_area("Past Surgical History (PSH)", "Appendectomy (2005)", key="psh_input")
        # Meds & Allergies
        current_meds_str = st.text_area("Current Medications (name, dose, freq)", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily\nAspirin 81mg daily", key="meds_input")
        allergies_str = st.text_area("Allergies (comma separated)", "Penicillin (rash)", key="allergy_input")
        # Social/Family
        social_history = st.text_area("Social History (SH)", "Smoker (1 ppd x 30 years), occasional alcohol.", key="sh_input")
        family_history = st.text_area("Family History (FHx)", "Father had MI at age 60. Mother has HTN.", key="fhx_input")
        # Vitals/Exam
        col1, col2 = st.columns(2)
        with col1:
            temp_c = st.number_input("Temp (Β°C)", 35.0, 42.0, 36.8, format="%.1f", key="temp_input")
            hr_bpm = st.number_input("HR (bpm)", 30, 250, 95, key="hr_input")
            rr_rpm = st.number_input("RR (rpm)", 5, 50, 18, key="rr_input")
        with col2:
            bp_mmhg = st.text_input("BP (SYS/DIA)", "155/90", key="bp_input")
            spo2_percent = st.number_input("SpO2 (%)", 70, 100, 96, key="spo2_input")
            pain_scale = st.slider("Pain (0-10)", 0, 10, 8, key="pain_input")
        exam_notes = st.text_area("Brief Physical Exam Notes", "Awake, alert, oriented x3...", key="exam_input")

        # Compile Patient Data Dictionary on button press
        if st.button("Start/Update Consultation", key="start_button"):
            current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
            current_med_names = []
            # Improved parsing for names (still basic, assumes name is first word)
            for med in current_meds_list:
                match = re.match(r"^\s*([a-zA-Z\-]+)", med)
                if match:
                     current_med_names.append(match.group(1).lower()) # Use lower case for matching

            allergies_list = [a.strip().lower() for a in allergies_str.split(',') if a.strip()] # Lowercase allergies

            st.session_state.patient_data = {
                "demographics": {"age": age, "sex": sex},
                "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
                "pmh": {"conditions": pmh}, "psh": {"procedures": psh},
                "medications": {"current": current_meds_list, "names_only": current_med_names},
                "allergies": allergies_list,
                "social_history": {"details": social_history}, "family_history": {"details": family_history},
                "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale},
                "exam_findings": {"notes": exam_notes}
            }

            # Initial Red Flag Check (Client-side)
            red_flags = check_red_flags(st.session_state.patient_data)
            if red_flags:
                st.warning("**Initial Red Flags Detected:**")
                for flag in red_flags: st.warning(f"- {flag}")

            # Prepare initial message for the graph
            initial_prompt = f"Analyze the following patient case:\nChief Complaint: {chief_complaint}\nSummary: {age} y/o {sex} presenting with..." # Keep it brief, full data is in state
            st.session_state.messages = [HumanMessage(content=initial_prompt)]
            st.session_state.initial_analysis_done = False # Reset analysis state
            st.success("Patient data loaded. Ready for analysis.")
            st.rerun() # Refresh main area to show chat


    # --- Main Chat Interface Area ---
    st.header("πŸ’¬ Clinical Consultation")

    # Display chat messages
    for msg in st.session_state.messages:
        if isinstance(msg, HumanMessage):
            with st.chat_message("user"):
                st.markdown(msg.content)
        elif isinstance(msg, AIMessage):
            with st.chat_message("assistant"):
                # Check for structured JSON output
                structured_output = None
                try:
                    # Try to find JSON block first
                    json_match = re.search(r"```json\n(\{.*?\})\n```", msg.content, re.DOTALL)
                    if json_match:
                        structured_output = json.loads(json_match.group(1))
                        # Display non-JSON parts if any
                        non_json_content = msg.content.replace(json_match.group(0), "").strip()
                        if non_json_content:
                            st.markdown(non_json_content)
                            st.divider() # Separate text from structured output visually
                    elif msg.content.strip().startswith("{") and msg.content.strip().endswith("}"):
                         # Maybe the whole message is JSON
                         structured_output = json.loads(msg.content)
                    else:
                        # No JSON found, display raw content
                        st.markdown(msg.content)

                    if structured_output:
                        # Display the structured data nicely (reuse parts of previous UI display logic)
                        st.subheader("πŸ“Š AI Analysis & Recommendations")
                        # ... (Add logic here to display assessment, ddx, plan etc. from structured_output)
                        # Example:
                        st.write(f"**Assessment:** {structured_output.get('assessment', 'N/A')}")
                        # Display DDx, Plan etc. using expanders or tabs
                        # ...
                        # Display Rationale & Interaction Summary
                        with st.expander("Rationale & Guideline Check"):
                             st.write(structured_output.get("rationale_summary", "N/A"))
                        if structured_output.get("interaction_check_summary"):
                             with st.expander("Interaction Check"):
                                 st.write(structured_output.get("interaction_check_summary"))


                except json.JSONDecodeError:
                    st.markdown(msg.content) # Display raw if JSON parsing fails

                # Display tool calls if any were made in this AI turn
                if msg.tool_calls:
                     with st.expander("πŸ› οΈ AI requested actions", expanded=False):
                         for tc in msg.tool_calls:
                             st.code(f"{tc['name']}(args={tc['args']})", language="python")

        elif isinstance(msg, ToolMessage):
             with st.chat_message("tool", avatar="πŸ› οΈ"):
                try:
                    tool_data = json.loads(msg.content)
                    status = tool_data.get("status", "info")
                    message = tool_data.get("message", msg.content)
                    details = tool_data.get("details")
                    warnings = tool_data.get("warnings")

                    if status == "success" or status == "clear" or status == "flagged":
                        st.success(f"Tool Result ({msg.name}): {message}", icon="βœ…" if status != "flagged" else "🚨")
                    elif status == "warning":
                         st.warning(f"Tool Result ({msg.name}): {message}", icon="⚠️")
                         if warnings:
                             for warn in warnings: st.caption(f"- {warn}")
                    else: # Error or unknown status
                         st.error(f"Tool Result ({msg.name}): {message}", icon="❌")

                    if details: st.caption(f"Details: {details}")

                except json.JSONDecodeError:
                    st.info(f"Tool Result ({msg.name}): {msg.content}") # Display raw if not JSON


    # Chat input for user
    if prompt := st.chat_input("Your message or follow-up query..."):
        if not st.session_state.patient_data:
            st.warning("Please load patient data using the sidebar first.")
        else:
            # Add user message to state
            st.session_state.messages.append(HumanMessage(content=prompt))
            with st.chat_message("user"):
                st.markdown(prompt)

            # Prepare state for graph invocation
            current_state = AgentState(
                messages=st.session_state.messages,
                patient_data=st.session_state.patient_data
            )

            # Stream graph execution
            with st.chat_message("assistant"):
                message_placeholder = st.empty()
                full_response = ""

                # Use stream to get intermediate steps (optional but good for UX)
                # This shows AI thinking and tool calls/results progressively
                try:
                    for event in st.session_state.graph_app.stream(current_state, {"recursion_limit": 15}):
                        # event is a dictionary, keys are node names
                        if "agent" in event:
                            ai_msg = event["agent"]["messages"][-1] # Get the latest AI message
                            if isinstance(ai_msg, AIMessage):
                                full_response += ai_msg.content # Append content for final display
                                message_placeholder.markdown(full_response + "β–Œ") # Show typing indicator

                                # Display tool calls as they happen (optional)
                                # if ai_msg.tool_calls:
                                #     st.info(f"Requesting tools: {[tc['name'] for tc in ai_msg.tool_calls]}")

                        elif "tools" in event:
                            # Display tool results as they come back (optional, already handled by message display loop)
                             pass
                             # tool_msgs = event["tools"]["messages"]
                             # for tool_msg in tool_msgs:
                             #      st.info(f"Tool {tool_msg.name} result received.")


                    # Final display after streaming
                    message_placeholder.markdown(full_response)


                    # Update session state with the final messages from the graph run
                    # The graph state itself isn't directly accessible after streaming finishes easily this way
                    # We need to get the final state if we used invoke, or reconstruct from stream events
                    # A simpler way for now: just append the *last* AI message and any Tool messages from the stream
                    # This assumes the stream provides the final state implicitly. For robust state, use invoke or checkpointer.

                    # A more robust way: invoke and get final state
                    # final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
                    # st.session_state.messages = final_state['messages']
                    # --- Let's stick to appending for simplicity in this example ---
                    # Find the last AI message and tool messages from the stream (needs careful event parsing)
                    # Or, re-run invoke non-streamed just to get final state (less efficient)
                    final_state_capture = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
                    st.session_state.messages = final_state_capture['messages']


                except Exception as e:
                    st.error(f"An error occurred during analysis: {e}")
                    # Attempt to add the error message to the history
                    st.session_state.messages.append(AIMessage(content=f"Sorry, an error occurred: {e}"))


            # Rerun to display the updated chat history correctly
            st.rerun()


    # Disclaimer
    st.markdown("---")
    st.warning("**Disclaimer:** SynapseAI is for clinical decision support...") # Keep disclaimer

if __name__ == "__main__":
    main()