File size: 34,263 Bytes
788074d 4258926 896de2d 63b0a52 4258926 9c32b8a 4258926 fc636ce 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 4258926 896de2d 9c32b8a 4258926 788074d 896de2d 4258926 896de2d 4258926 b564942 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
from langgraph.prebuilt import ToolExecutor
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver # For state persistence (optional but good)
from typing import Optional, List, Dict, Any, TypedDict, Annotated
import json
import re
import operator
# --- Configuration & Constants --- (Keep previous ones like ClinicalAppSettings)
class ClinicalAppSettings:
APP_TITLE = "SynapseAI: Interactive Clinical Decision Support"
PAGE_LAYOUT = "wide"
MODEL_NAME = "llama3-70b-8192"
TEMPERATURE = 0.1
MAX_SEARCH_RESULTS = 3
class ClinicalPrompts:
# UPDATED SYSTEM PROMPT FOR CONVERSATIONAL FLOW & GUIDELINES
SYSTEM_PROMPT = """
You are SynapseAI, an expert AI clinical assistant engaged in an interactive consultation.
Your goal is to support healthcare professionals by analyzing patient data, providing differential diagnoses, suggesting evidence-based management plans, and identifying risks according to current standards of care.
**Core Directives for this Conversation:**
1. **Analyze Sequentially:** Process information turn-by-turn. You will receive initial patient data, and potentially follow-up messages or results from tools you requested. Base your responses on the *entire* conversation history.
2. **Seek Clarity:** If the provided information is insufficient or ambiguous for a safe assessment, CLEARLY STATE what specific additional information or clarification is needed. Do NOT guess or make unsafe assumptions.
3. **Structured Assessment (When Ready):** When you have sufficient information and have performed necessary checks (like interactions), provide a comprehensive assessment using the following JSON structure. Only output this structure when you believe you have a complete initial analysis or plan. Do NOT output incomplete JSON.
```json
{
"assessment": "Concise summary of the patient's presentation and key findings based on the conversation.",
"differential_diagnosis": [
{"diagnosis": "Primary Diagnosis", "likelihood": "High/Medium/Low", "rationale": "Supporting evidence from conversation..."},
{"diagnosis": "Alternative Diagnosis 1", "likelihood": "Medium/Low", "rationale": "Supporting/Refuting evidence..."},
{"diagnosis": "Alternative Diagnosis 2", "likelihood": "Low", "rationale": "Why it's less likely but considered..."}
],
"risk_assessment": {
"identified_red_flags": ["List any triggered red flags"],
"immediate_concerns": ["Specific urgent issues (e.g., sepsis risk, ACS rule-out)"],
"potential_complications": ["Possible future issues"]
},
"recommended_plan": {
"investigations": ["List specific lab tests or imaging needed. Use 'order_lab_test' tool."],
"therapeutics": ["Suggest specific treatments/prescriptions. Use 'prescribe_medication' tool. MUST check interactions first."],
"consultations": ["Recommend specialist consultations."],
"patient_education": ["Key points for patient communication."]
},
"rationale_summary": "Justification for assessment/plan. **Crucially, if relevant (e.g., ACS, sepsis, common infections), use 'tavily_search_results' to find and cite current clinical practice guidelines (e.g., 'latest ACC/AHA chest pain guidelines 202X', 'Surviving Sepsis Campaign guidelines') supporting your recommendations.**",
"interaction_check_summary": "Summary of findings from 'check_drug_interactions' if performed."
}
```
4. **Safety First - Interactions:** BEFORE suggesting a new prescription via `prescribe_medication`, you MUST FIRST use `check_drug_interactions`. Report the findings. If interactions exist, modify the plan or state the contraindication.
5. **Safety First - Red Flags:** Use the `flag_risk` tool IMMEDIATELY if critical red flags requiring urgent action are identified at any point.
6. **Tool Use:** Employ tools (`order_lab_test`, `prescribe_medication`, `check_drug_interactions`, `flag_risk`, `tavily_search_results`) logically within the conversational flow. Wait for tool results before proceeding if the result is needed for the next step (e.g., wait for interaction check before confirming prescription).
7. **Evidence & Guidelines:** Actively use `tavily_search_results` not just for general knowledge, but specifically to query for and incorporate **current clinical practice guidelines** relevant to the patient's presentation (e.g., chest pain, shortness of breath, suspected infection). Summarize findings in the `rationale_summary` when providing the structured output.
8. **Conciseness:** Be medically accurate and concise. Use standard terminology. Respond naturally in conversation until ready for the full structured JSON output.
"""
# --- Mock Data / Helpers --- (Keep previous ones like MOCK_INTERACTION_DB, ALLERGY_INTERACTIONS, parse_bp, check_red_flags)
# (Include the helper functions from the previous response here)
MOCK_INTERACTION_DB = {
("lisinopril", "spironolactone"): "High risk of hyperkalemia. Monitor potassium closely.",
("warfarin", "amiodarone"): "Increased bleeding risk. Monitor INR frequently and adjust Warfarin dose.",
("simvastatin", "clarithromycin"): "Increased risk of myopathy/rhabdomyolysis. Avoid combination or use lower statin dose.",
("aspirin", "ibuprofen"): "Concurrent use may decrease Aspirin's cardioprotective effect. Potential for increased GI bleeding."
}
ALLERGY_INTERACTIONS = {
"penicillin": ["amoxicillin", "ampicillin", "piperacillin"],
"sulfa": ["sulfamethoxazole", "sulfasalazine"],
"aspirin": ["ibuprofen", "naproxen"] # Cross-reactivity example for NSAIDs
}
def parse_bp(bp_string: str) -> Optional[tuple[int, int]]:
match = re.match(r"(\d{1,3})\s*/\s*(\d{1,3})", bp_string)
if match: return int(match.group(1)), int(match.group(2))
return None
def check_red_flags(patient_data: dict) -> List[str]:
flags = []
symptoms = patient_data.get("hpi", {}).get("symptoms", [])
vitals = patient_data.get("vitals", {})
history = patient_data.get("pmh", {}).get("conditions", "")
symptoms_lower = [s.lower() for s in symptoms]
if "chest pain" in symptoms_lower: flags.append("Red Flag: Chest Pain reported.")
if "shortness of breath" in symptoms_lower: flags.append("Red Flag: Shortness of Breath reported.")
if "severe headache" in symptoms_lower: flags.append("Red Flag: Severe Headache reported.")
# Add other symptom checks...
if "temp_c" in vitals and vitals["temp_c"] >= 38.5: flags.append(f"Red Flag: Fever ({vitals['temp_c']}Β°C).")
if "hr_bpm" in vitals and vitals["hr_bpm"] >= 120: flags.append(f"Red Flag: Tachycardia ({vitals['hr_bpm']} bpm).")
if "bp_mmhg" in vitals:
bp = parse_bp(vitals["bp_mmhg"])
if bp and (bp[0] >= 180 or bp[1] >= 110): flags.append(f"Red Flag: Hypertensive Urgency/Emergency (BP: {vitals['bp_mmhg']} mmHg).")
if bp and (bp[0] <= 90 or bp[1] <= 60): flags.append(f"Red Flag: Hypotension (BP: {vitals['bp_mmhg']} mmHg).")
# Add other vital checks...
if "history of mi" in history.lower() and "chest pain" in symptoms_lower: flags.append("Red Flag: History of MI with current Chest Pain.")
# Add other history checks...
return flags
# --- Enhanced Tool Definitions --- (Keep previous Pydantic models and @tool functions)
# (Include LabOrderInput, PrescriptionInput, InteractionCheckInput, FlagRiskInput
# and the corresponding @tool functions: order_lab_test, prescribe_medication,
# check_drug_interactions, flag_risk from the previous response here)
class LabOrderInput(BaseModel):
test_name: str = Field(..., description="Specific name of the lab test or panel (e.g., 'CBC', 'BMP', 'Troponin I', 'Urinalysis').")
reason: str = Field(..., description="Clinical justification for ordering the test (e.g., 'Rule out infection', 'Assess renal function', 'Evaluate for ACS').")
priority: str = Field("Routine", description="Priority of the test (e.g., 'STAT', 'Routine').")
@tool("order_lab_test", args_schema=LabOrderInput)
def order_lab_test(test_name: str, reason: str, priority: str = "Routine") -> str:
"""Orders a specific lab test with clinical justification and priority."""
return json.dumps({"status": "success", "message": f"Lab Ordered: {test_name} ({priority})", "details": f"Reason: {reason}"})
class PrescriptionInput(BaseModel):
medication_name: str = Field(..., description="Name of the medication.")
dosage: str = Field(..., description="Dosage amount and unit (e.g., '500 mg', '10 mg').")
route: str = Field(..., description="Route of administration (e.g., 'PO', 'IV', 'IM', 'Topical').")
frequency: str = Field(..., description="How often the medication should be taken (e.g., 'BID', 'QDaily', 'Q4-6H PRN').")
duration: str = Field("As directed", description="Duration of treatment (e.g., '7 days', '1 month', 'Until follow-up').")
reason: str = Field(..., description="Clinical indication for the prescription.")
@tool("prescribe_medication", args_schema=PrescriptionInput)
def prescribe_medication(medication_name: str, dosage: str, route: str, frequency: str, duration: str, reason: str) -> str:
"""Prescribes a medication with detailed instructions and clinical indication."""
# NOTE: Interaction check should have been done *before* calling this via a separate tool call
return json.dumps({"status": "success", "message": f"Prescription Prepared: {medication_name} {dosage} {route} {frequency}", "details": f"Duration: {duration}. Reason: {reason}"})
class InteractionCheckInput(BaseModel):
potential_prescription: str = Field(..., description="The name of the NEW medication being considered.")
current_medications: List[str] = Field(..., description="List of the patient's CURRENT medication names.")
allergies: List[str] = Field(..., description="List of the patient's known allergies.")
@tool("check_drug_interactions", args_schema=InteractionCheckInput)
def check_drug_interactions(potential_prescription: str, current_medications: List[str], allergies: List[str]) -> str:
"""Checks for potential drug-drug and drug-allergy interactions BEFORE prescribing."""
warnings = []
potential_med_lower = potential_prescription.lower()
current_meds_lower = [med.lower() for med in current_medications]
allergies_lower = [a.lower() for a in allergies]
for allergy in allergies_lower:
if allergy == potential_med_lower:
warnings.append(f"CRITICAL ALLERGY: Patient allergic to {allergy}. Cannot prescribe {potential_prescription}.")
continue
if allergy in ALLERGY_INTERACTIONS:
for cross_reactant in ALLERGY_INTERACTIONS[allergy]:
if cross_reactant.lower() == potential_med_lower:
warnings.append(f"POTENTIAL CROSS-ALLERGY: Patient allergic to {allergy}. High risk with {potential_prescription}.")
for current_med in current_meds_lower:
pair1 = (current_med, potential_med_lower)
pair2 = (potential_med_lower, current_med)
# Normalize keys for lookup if necessary (e.g., if DB keys are canonical names)
key1 = tuple(sorted(pair1))
key2 = tuple(sorted(pair2)) # Although redundant if always sorted
if pair1 in MOCK_INTERACTION_DB:
warnings.append(f"Interaction: {potential_prescription.capitalize()} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair1]}")
elif pair2 in MOCK_INTERACTION_DB:
warnings.append(f"Interaction: {potential_prescription.capitalize()} with {current_med.capitalize()} - {MOCK_INTERACTION_DB[pair2]}")
status = "warning" if warnings else "clear"
message = f"Interaction check for {potential_prescription}: {len(warnings)} potential issue(s) found." if warnings else f"No major interactions identified for {potential_prescription}."
return json.dumps({"status": status, "message": message, "warnings": warnings})
class FlagRiskInput(BaseModel):
risk_description: str = Field(..., description="Specific critical risk identified (e.g., 'Suspected Sepsis', 'Acute Coronary Syndrome', 'Stroke Alert').")
urgency: str = Field("High", description="Urgency level (e.g., 'Critical', 'High', 'Moderate').")
@tool("flag_risk", args_schema=FlagRiskInput)
def flag_risk(risk_description: str, urgency: str) -> str:
"""Flags a critical risk identified during analysis for immediate attention."""
# Display in Streamlit immediately
st.error(f"π¨ **{urgency.upper()} RISK FLAGGED by AI:** {risk_description}", icon="π¨")
return json.dumps({"status": "flagged", "message": f"Risk '{risk_description}' flagged with {urgency} urgency."})
# Initialize Search Tool
search_tool = TavilySearchResults(max_results=ClinicalAppSettings.MAX_SEARCH_RESULTS, name="tavily_search_results")
# --- LangGraph Setup ---
# Define the state structure
class AgentState(TypedDict):
messages: Annotated[list[Any], operator.add] # Accumulates messages (Human, AI, Tool)
patient_data: Optional[dict] # Holds the structured patient data (can be updated if needed)
# Potentially add other state elements like 'interaction_check_needed_for': Optional[str]
# Define Tools and Tool Executor
tools = [
order_lab_test,
prescribe_medication,
check_drug_interactions,
flag_risk,
search_tool
]
tool_executor = ToolExecutor(tools)
# Define the Agent Model
model = ChatGroq(
temperature=ClinicalAppSettings.TEMPERATURE,
model=ClinicalAppSettings.MODEL_NAME
)
model_with_tools = model.bind_tools(tools) # Bind tools for the LLM to know about them
# --- Graph Nodes ---
# 1. Agent Node: Calls the LLM
def agent_node(state: AgentState):
"""Invokes the LLM to decide the next action or response."""
print("---AGENT NODE---")
# Make sure patient data is included in the first message if not already there
# This is a basic way; more robust would be merging patient_data into context
current_messages = state['messages']
if len(current_messages) == 1 and isinstance(current_messages[0], HumanMessage) and state.get('patient_data'):
# Augment the first human message with formatted patient data
formatted_data = format_patient_data_for_prompt(state['patient_data']) # Need this helper function
current_messages = [
SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT), # Ensure system prompt is first
HumanMessage(content=f"{current_messages[0].content}\n\n**Initial Patient Data:**\n{formatted_data}")
]
elif not any(isinstance(m, SystemMessage) for m in current_messages):
# Add system prompt if missing
current_messages = [SystemMessage(content=ClinicalPrompts.SYSTEM_PROMPT)] + current_messages
response = model_with_tools.invoke(current_messages)
print(f"Agent response: {response}")
return {"messages": [response]}
# 2. Tool Node: Executes tools called by the Agent
def tool_node(state: AgentState):
"""Executes tools called by the LLM and returns results."""
print("---TOOL NODE---")
last_message = state['messages'][-1]
if not isinstance(last_message, AIMessage) or not last_message.tool_calls:
print("No tool calls in last message.")
return {} # Should not happen if routing is correct, but safety check
tool_calls = last_message.tool_calls
tool_messages = []
# Safety Check: Ensure interaction check happens *before* prescribing the *same* drug
prescribe_calls = {call['args'].get('medication_name'): call['id'] for call in tool_calls if call['name'] == 'prescribe_medication'}
interaction_check_calls = {call['args'].get('potential_prescription'): call['id'] for call in tool_calls if call['name'] == 'check_drug_interactions'}
for med_name, prescribe_call_id in prescribe_calls.items():
if med_name not in interaction_check_calls:
st.error(f"**Safety Violation:** AI attempted to prescribe '{med_name}' without requesting `check_drug_interactions` in the *same turn*. Prescription blocked for this turn.")
# Create an error ToolMessage to send back to the LLM
error_msg = ToolMessage(
content=json.dumps({"status": "error", "message": f"Interaction check for {med_name} must be requested *before or alongside* the prescription call."}),
tool_call_id=prescribe_call_id
)
tool_messages.append(error_msg)
# Remove the invalid prescribe call to prevent execution
tool_calls = [call for call in tool_calls if call['id'] != prescribe_call_id]
# Add patient context to interaction checks if needed
patient_meds = state.get("patient_data", {}).get("medications", {}).get("names_only", [])
patient_allergies = state.get("patient_data", {}).get("allergies", [])
for call in tool_calls:
if call['name'] == 'check_drug_interactions':
call['args']['current_medications'] = patient_meds
call['args']['allergies'] = patient_allergies
print(f"Augmented interaction check args: {call['args']}")
# Execute remaining valid tool calls
if tool_calls:
responses = tool_executor.batch(tool_calls)
# Responses is a list of tool outputs corresponding to tool_calls
# We need to create ToolMessage objects
tool_messages.extend([
ToolMessage(content=str(resp), tool_call_id=call['id'])
for call, resp in zip(tool_calls, responses)
])
print(f"Tool results: {tool_messages}")
return {"messages": tool_messages}
# --- Graph Edges (Routing Logic) ---
def should_continue(state: AgentState) -> str:
"""Determines whether to continue the loop or end."""
last_message = state['messages'][-1]
# If the LLM made tool calls, we execute them
if isinstance(last_message, AIMessage) and last_message.tool_calls:
print("Routing: continue_tools")
return "continue_tools"
# Otherwise, we end the loop (AI provided a direct answer or finished)
else:
print("Routing: end_conversation_turn")
return "end_conversation_turn"
# --- Graph Definition ---
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# Define entry point
workflow.set_entry_point("agent")
# Add conditional edges
workflow.add_conditional_edges(
"agent", # Source node
should_continue, # Function to decide the route
{
"continue_tools": "tools", # If tool calls exist, go to tools node
"end_conversation_turn": END # Otherwise, end the graph iteration
}
)
# Add edge from tools back to agent
workflow.add_edge("tools", "agent")
# Compile the graph
# memory = MemorySaverInMemory() # Optional: for persisting state across runs
# app = workflow.compile(checkpointer=memory)
app = workflow.compile()
# --- Helper Function to Format Patient Data ---
def format_patient_data_for_prompt(data: dict) -> str:
"""Formats the patient dictionary into a readable string for the LLM."""
prompt_str = ""
for key, value in data.items():
if isinstance(value, dict):
section_title = key.replace('_', ' ').title()
prompt_str += f"**{section_title}:**\n"
for sub_key, sub_value in value.items():
if sub_value:
prompt_str += f" - {sub_key.replace('_', ' ').title()}: {sub_value}\n"
elif isinstance(value, list) and value:
prompt_str += f"**{key.replace('_', ' ').title()}:** {', '.join(map(str, value))}\n"
elif value:
prompt_str += f"**{key.replace('_', ' ').title()}:** {value}\n"
return prompt_str.strip()
# --- Streamlit UI (Modified for Conversation) ---
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | Powered by Langchain/LangGraph & Groq ({ClinicalAppSettings.MODEL_NAME})")
# Initialize session state for conversation
if "messages" not in st.session_state:
st.session_state.messages = [] # Store entire conversation history (Human, AI, Tool)
if "patient_data" not in st.session_state:
st.session_state.patient_data = None
if "initial_analysis_done" not in st.session_state:
st.session_state.initial_analysis_done = False
if "graph_app" not in st.session_state:
st.session_state.graph_app = app # Store compiled graph
# --- Patient Data Input Sidebar --- (Similar to before)
with st.sidebar:
st.header("π Patient Intake Form")
# ... (Keep the input fields exactly as in the previous example) ...
# Demographics
age = st.number_input("Age", min_value=0, max_value=120, value=55, key="age_input")
sex = st.selectbox("Biological Sex", ["Male", "Female", "Other/Prefer not to say"], key="sex_input")
# HPI
chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="cc_input")
hpi_details = st.text_area("Detailed HPI", "55 y/o male presents with substernal chest pain started 2 hours ago...", key="hpi_input")
symptoms = st.multiselect("Associated Symptoms", ["Nausea", "Diaphoresis", "Shortness of Breath", "Dizziness", "Palpitations", "Fever", "Cough"], default=["Nausea", "Diaphoresis"], key="sym_input")
# History
pmh = st.text_area("Past Medical History (PMH)", "Hypertension (HTN), Hyperlipidemia (HLD), Type 2 Diabetes Mellitus (DM2)", key="pmh_input")
psh = st.text_area("Past Surgical History (PSH)", "Appendectomy (2005)", key="psh_input")
# Meds & Allergies
current_meds_str = st.text_area("Current Medications (name, dose, freq)", "Lisinopril 10mg daily\nMetformin 1000mg BID\nAtorvastatin 40mg daily\nAspirin 81mg daily", key="meds_input")
allergies_str = st.text_area("Allergies (comma separated)", "Penicillin (rash)", key="allergy_input")
# Social/Family
social_history = st.text_area("Social History (SH)", "Smoker (1 ppd x 30 years), occasional alcohol.", key="sh_input")
family_history = st.text_area("Family History (FHx)", "Father had MI at age 60. Mother has HTN.", key="fhx_input")
# Vitals/Exam
col1, col2 = st.columns(2)
with col1:
temp_c = st.number_input("Temp (Β°C)", 35.0, 42.0, 36.8, format="%.1f", key="temp_input")
hr_bpm = st.number_input("HR (bpm)", 30, 250, 95, key="hr_input")
rr_rpm = st.number_input("RR (rpm)", 5, 50, 18, key="rr_input")
with col2:
bp_mmhg = st.text_input("BP (SYS/DIA)", "155/90", key="bp_input")
spo2_percent = st.number_input("SpO2 (%)", 70, 100, 96, key="spo2_input")
pain_scale = st.slider("Pain (0-10)", 0, 10, 8, key="pain_input")
exam_notes = st.text_area("Brief Physical Exam Notes", "Awake, alert, oriented x3...", key="exam_input")
# Compile Patient Data Dictionary on button press
if st.button("Start/Update Consultation", key="start_button"):
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
current_med_names = []
# Improved parsing for names (still basic, assumes name is first word)
for med in current_meds_list:
match = re.match(r"^\s*([a-zA-Z\-]+)", med)
if match:
current_med_names.append(match.group(1).lower()) # Use lower case for matching
allergies_list = [a.strip().lower() for a in allergies_str.split(',') if a.strip()] # Lowercase allergies
st.session_state.patient_data = {
"demographics": {"age": age, "sex": sex},
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
"pmh": {"conditions": pmh}, "psh": {"procedures": psh},
"medications": {"current": current_meds_list, "names_only": current_med_names},
"allergies": allergies_list,
"social_history": {"details": social_history}, "family_history": {"details": family_history},
"vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale},
"exam_findings": {"notes": exam_notes}
}
# Initial Red Flag Check (Client-side)
red_flags = check_red_flags(st.session_state.patient_data)
if red_flags:
st.warning("**Initial Red Flags Detected:**")
for flag in red_flags: st.warning(f"- {flag}")
# Prepare initial message for the graph
initial_prompt = f"Analyze the following patient case:\nChief Complaint: {chief_complaint}\nSummary: {age} y/o {sex} presenting with..." # Keep it brief, full data is in state
st.session_state.messages = [HumanMessage(content=initial_prompt)]
st.session_state.initial_analysis_done = False # Reset analysis state
st.success("Patient data loaded. Ready for analysis.")
st.rerun() # Refresh main area to show chat
# --- Main Chat Interface Area ---
st.header("π¬ Clinical Consultation")
# Display chat messages
for msg in st.session_state.messages:
if isinstance(msg, HumanMessage):
with st.chat_message("user"):
st.markdown(msg.content)
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
# Check for structured JSON output
structured_output = None
try:
# Try to find JSON block first
json_match = re.search(r"```json\n(\{.*?\})\n```", msg.content, re.DOTALL)
if json_match:
structured_output = json.loads(json_match.group(1))
# Display non-JSON parts if any
non_json_content = msg.content.replace(json_match.group(0), "").strip()
if non_json_content:
st.markdown(non_json_content)
st.divider() # Separate text from structured output visually
elif msg.content.strip().startswith("{") and msg.content.strip().endswith("}"):
# Maybe the whole message is JSON
structured_output = json.loads(msg.content)
else:
# No JSON found, display raw content
st.markdown(msg.content)
if structured_output:
# Display the structured data nicely (reuse parts of previous UI display logic)
st.subheader("π AI Analysis & Recommendations")
# ... (Add logic here to display assessment, ddx, plan etc. from structured_output)
# Example:
st.write(f"**Assessment:** {structured_output.get('assessment', 'N/A')}")
# Display DDx, Plan etc. using expanders or tabs
# ...
# Display Rationale & Interaction Summary
with st.expander("Rationale & Guideline Check"):
st.write(structured_output.get("rationale_summary", "N/A"))
if structured_output.get("interaction_check_summary"):
with st.expander("Interaction Check"):
st.write(structured_output.get("interaction_check_summary"))
except json.JSONDecodeError:
st.markdown(msg.content) # Display raw if JSON parsing fails
# Display tool calls if any were made in this AI turn
if msg.tool_calls:
with st.expander("π οΈ AI requested actions", expanded=False):
for tc in msg.tool_calls:
st.code(f"{tc['name']}(args={tc['args']})", language="python")
elif isinstance(msg, ToolMessage):
with st.chat_message("tool", avatar="π οΈ"):
try:
tool_data = json.loads(msg.content)
status = tool_data.get("status", "info")
message = tool_data.get("message", msg.content)
details = tool_data.get("details")
warnings = tool_data.get("warnings")
if status == "success" or status == "clear" or status == "flagged":
st.success(f"Tool Result ({msg.name}): {message}", icon="β
" if status != "flagged" else "π¨")
elif status == "warning":
st.warning(f"Tool Result ({msg.name}): {message}", icon="β οΈ")
if warnings:
for warn in warnings: st.caption(f"- {warn}")
else: # Error or unknown status
st.error(f"Tool Result ({msg.name}): {message}", icon="β")
if details: st.caption(f"Details: {details}")
except json.JSONDecodeError:
st.info(f"Tool Result ({msg.name}): {msg.content}") # Display raw if not JSON
# Chat input for user
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data:
st.warning("Please load patient data using the sidebar first.")
else:
# Add user message to state
st.session_state.messages.append(HumanMessage(content=prompt))
with st.chat_message("user"):
st.markdown(prompt)
# Prepare state for graph invocation
current_state = AgentState(
messages=st.session_state.messages,
patient_data=st.session_state.patient_data
)
# Stream graph execution
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# Use stream to get intermediate steps (optional but good for UX)
# This shows AI thinking and tool calls/results progressively
try:
for event in st.session_state.graph_app.stream(current_state, {"recursion_limit": 15}):
# event is a dictionary, keys are node names
if "agent" in event:
ai_msg = event["agent"]["messages"][-1] # Get the latest AI message
if isinstance(ai_msg, AIMessage):
full_response += ai_msg.content # Append content for final display
message_placeholder.markdown(full_response + "β") # Show typing indicator
# Display tool calls as they happen (optional)
# if ai_msg.tool_calls:
# st.info(f"Requesting tools: {[tc['name'] for tc in ai_msg.tool_calls]}")
elif "tools" in event:
# Display tool results as they come back (optional, already handled by message display loop)
pass
# tool_msgs = event["tools"]["messages"]
# for tool_msg in tool_msgs:
# st.info(f"Tool {tool_msg.name} result received.")
# Final display after streaming
message_placeholder.markdown(full_response)
# Update session state with the final messages from the graph run
# The graph state itself isn't directly accessible after streaming finishes easily this way
# We need to get the final state if we used invoke, or reconstruct from stream events
# A simpler way for now: just append the *last* AI message and any Tool messages from the stream
# This assumes the stream provides the final state implicitly. For robust state, use invoke or checkpointer.
# A more robust way: invoke and get final state
# final_state = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
# st.session_state.messages = final_state['messages']
# --- Let's stick to appending for simplicity in this example ---
# Find the last AI message and tool messages from the stream (needs careful event parsing)
# Or, re-run invoke non-streamed just to get final state (less efficient)
final_state_capture = st.session_state.graph_app.invoke(current_state, {"recursion_limit": 15})
st.session_state.messages = final_state_capture['messages']
except Exception as e:
st.error(f"An error occurred during analysis: {e}")
# Attempt to add the error message to the history
st.session_state.messages.append(AIMessage(content=f"Sorry, an error occurred: {e}"))
# Rerun to display the updated chat history correctly
st.rerun()
# Disclaimer
st.markdown("---")
st.warning("**Disclaimer:** SynapseAI is for clinical decision support...") # Keep disclaimer
if __name__ == "__main__":
main() |