Spaces:
Running
Running
File size: 11,986 Bytes
a1a2096 67588b7 03aa58e a1a2096 03aa58e 67588b7 073ee45 67588b7 146b35d a1a2096 7ddc3a3 a1a2096 d068091 5fdef64 d068091 7ddc3a3 03aa58e a1a2096 242cb8f 67588b7 073ee45 242cb8f 67588b7 7ddc3a3 67588b7 d068091 5fdef64 7ddc3a3 67588b7 5fdef64 67588b7 a1a2096 03aa58e 7ddc3a3 67588b7 03aa58e 67588b7 5fdef64 7ddc3a3 03aa58e 7ddc3a3 03aa58e 7ddc3a3 03aa58e 7ddc3a3 03aa58e 073ee45 7ddc3a3 073ee45 146b35d 073ee45 7ddc3a3 073ee45 146b35d 073ee45 242cb8f a1a2096 146b35d a1a2096 67588b7 a1a2096 146b35d 67588b7 242cb8f 03aa58e 67588b7 242cb8f 03aa58e 242cb8f 67588b7 242cb8f 03aa58e 67588b7 242cb8f 03aa58e 242cb8f 67588b7 242cb8f a1a2096 146b35d a1a2096 03aa58e a1a2096 7ddc3a3 a1a2096 7ddc3a3 a1a2096 67588b7 a1a2096 67588b7 a1a2096 67588b7 03aa58e a1a2096 7ddc3a3 a1a2096 7ddc3a3 67588b7 073ee45 a1a2096 073ee45 a1a2096 67588b7 a1a2096 7ddc3a3 67588b7 03aa58e a1a2096 7ddc3a3 a1a2096 7ddc3a3 67588b7 a1a2096 67588b7 a1a2096 67588b7 7ddc3a3 a1a2096 03aa58e a1a2096 146b35d a1a2096 073ee45 a1a2096 146b35d 03aa58e 146b35d 7ddc3a3 03aa58e 67588b7 073ee45 7ddc3a3 d068091 7ddc3a3 67588b7 03aa58e 146b35d d068091 03aa58e 146b35d 03aa58e 7ddc3a3 67588b7 03aa58e 67588b7 03aa58e 146b35d 7ddc3a3 03aa58e 7ddc3a3 03aa58e 67588b7 7ddc3a3 073ee45 146b35d 7ddc3a3 073ee45 03aa58e 073ee45 03aa58e 073ee45 146b35d a1a2096 67588b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
"""
AI Resume Studio โ Hugging Face Space
Author: Oluwafemi Idiakhoa
Updated: 2025-06-27
Features
โโโโโโโโ
1. Generate rรฉsumรฉ โ Word & PDF downloads
2. Score rรฉsumรฉ vs. job description
3. AI Section Co-Pilot (rewrite, quantify, bulletizeโฆ)
4. Cover-letter generator
5. Fetch any job description by URL:
โข LinkedIn via OAuth2 Jobs API
โข All other sites via HTML scraping
6. Multilingual export via Deep-Translator (DeepL backend)
7. Auto-populate Score tab from latest Resume & JD
"""
import os
import re
import time
import tempfile
import requests
import gradio as gr
import google.generativeai as genai
from dotenv import load_dotenv
from bs4 import BeautifulSoup
from docx import Document
from reportlab.lib.pagesizes import LETTER
from reportlab.pdfgen import canvas
from deep_translator import DeeplTranslator
from urllib.parse import urlparse
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Load Secrets & Configure Clients
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
load_dotenv()
# Gemini
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
GEMINI = genai.GenerativeModel("gemini-1.5-pro-latest")
# DeepL via Deep-Translator
DEEPL_KEY = os.getenv("DEEPL_API_KEY")
def translate_text(text: str, tgt: str) -> str:
if not DEEPL_KEY or tgt.upper() == "EN":
return text
try:
return DeeplTranslator(api_key=DEEPL_KEY, target=tgt).translate(text)
except Exception as e:
return f"[Translation Error] {e}\n\n{text}"
# LinkedIn OAuth 2.0 (Client Credentials)
CLIENT_ID = os.getenv("LINKEDIN_CLIENT_ID")
CLIENT_SECRET = os.getenv("LINKEDIN_CLIENT_SECRET")
_token_cache = {}
def get_linkedin_token():
data = _token_cache.get("data", {})
if data and data.get("expires_at", 0) > time.time():
return data["access_token"]
resp = requests.post(
"https://www.linkedin.com/oauth/v2/accessToken",
data={
"grant_type": "client_credentials",
"client_id": CLIENT_ID,
"client_secret": CLIENT_SECRET,
},
timeout=10
)
resp.raise_for_status()
payload = resp.json()
payload["expires_at"] = time.time() + payload.get("expires_in", 0) - 60
_token_cache["data"] = payload
return payload["access_token"]
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Job-Description Fetcher (LinkedIn API or Generic Scraping)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def fetch_job_description(url: str) -> str:
domain = urlparse(url).netloc.lower()
if "linkedin.com" in domain:
m = re.search(r"(?:jobs/view/|currentJobId=)(\d+)", url)
if m:
job_id = m.group(1)
try:
token = get_linkedin_token()
api_url = f"https://api.linkedin.com/v2/jobPosts/{job_id}?projection=(description)"
r = requests.get(api_url,
headers={"Authorization": f"Bearer {token}"},
timeout=10)
r.raise_for_status()
return r.json().get("description", "")
except Exception:
pass
try:
page = requests.get(url, headers={"User-Agent":"Mozilla/5.0"}, timeout=10)
soup = BeautifulSoup(page.text, "html.parser")
selectors = [
"div.jobsearch-jobDescriptionText",
"section.description",
"div.jobs-description__content",
"div#job-details",
"article.jobPosting",
"div.jd-container",
]
for sel in selectors:
block = soup.select_one(sel)
if block and block.get_text(strip=True):
return block.get_text(" ", strip=True)
text = soup.get_text(" ", strip=True)
return text[:5000] + ("โฆ" if len(text) > 5000 else "")
except Exception as e:
return f"[Error fetching job description] {e}"
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# AI & File Utilities
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def ask_gemini(prompt: str, temp: float = 0.6) -> str:
try:
return GEMINI.generate_content(prompt, generation_config={"temperature": temp}).text.strip()
except Exception as e:
return f"[Gemini Error] {e}"
def save_docx(text: str) -> str:
f = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
doc = Document()
for line in text.splitlines():
doc.add_paragraph(line)
doc.save(f.name)
return f.name
def save_pdf(text: str) -> str:
f = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
c = canvas.Canvas(f.name, pagesize=LETTER)
width, height = LETTER
y = height - 72
for line in text.splitlines():
c.drawString(72, y, line)
y -= 14
if y < 72:
c.showPage()
y = height - 72
c.save()
return f.name
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Core AI Logic
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
LANGS = {
"EN": "English", "DE": "German", "FR": "French", "ES": "Spanish",
"IT": "Italian", "NL": "Dutch", "PT": "Portuguese","PL": "Polish",
"JA": "Japanese","ZH": "Chinese"
}
def generate_resume(name, email, phone, summary, exp, edu, skills, lang):
prompt = f"""
Create a professional rรฉsumรฉ in Markdown without first-person pronouns.
Output language: {LANGS[lang]}
Name: {name}
Email: {email}
Phone: {phone}
Professional Summary:
{summary}
Experience:
{exp}
Education:
{edu}
Skills:
{skills}
"""
md = ask_gemini(prompt)
return translate_text(md, lang)
def generate_and_export(name, email, phone, summary, exp, edu, skills, lang):
md = generate_resume(name, email, phone, summary, exp, edu, skills, lang)
return md, save_docx(md), save_pdf(md)
def score_resume(resume_md, jd):
prompt = f"""
Evaluate this rรฉsumรฉ against the job description. Return compact Markdown:
### Match Score
<0โ100>
### Suggestions
- โฆ
"""
return ask_gemini(prompt, temp=0.4)
def refine_section(text, instr, lang):
prompt = f"""
Apply the following instruction to this rรฉsumรฉ section. Respond in {LANGS[lang]}.
Instruction: {instr}
Section:
{text}
"""
out = ask_gemini(prompt)
return translate_text(out, lang)
def generate_cover_letter(resume_md, jd, tone, lang):
prompt = f"""
Draft a one-page cover letter (max 300 words), in a {tone} tone, using {LANGS[lang]}.
Salutation: "Dear Hiring Manager,"
Rรฉsumรฉ:
{resume_md}
Job Description:
{jd}
"""
letter = ask_gemini(prompt)
return translate_text(letter, lang)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Gradio App Definition with State for Auto-Populate
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
with gr.Blocks(title="AI Resume Studio") as demo:
gr.Markdown("## ๐ง AI Resume Studio (Gemini ร DeepL + Universal Job Fetcher)")
# State to hold last-generated rรฉsumรฉ & JD
resume_state = gr.State(value="")
jd_state = gr.State(value="")
# Tab 1: Generate Rรฉsumรฉ
with gr.Tab("๐ Generate Rรฉsumรฉ"):
with gr.Row():
name_in, email_in, phone_in = (
gr.Textbox(label="Name"),
gr.Textbox(label="Email"),
gr.Textbox(label="Phone"),
)
sum_in = gr.Textbox(label="Professional Summary")
exp_in = gr.Textbox(label="Experience")
edu_in = gr.Textbox(label="Education")
skills_in = gr.Textbox(label="Skills")
lang_in = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
md_out = gr.Markdown(label="Rรฉsumรฉ (Markdown)")
docx_out = gr.File(label="โฌ Download .docx")
pdf_out = gr.File(label="โฌ Download .pdf")
btn_gen = gr.Button("Generate")
btn_gen.click(
generate_and_export,
inputs=[name_in, email_in, phone_in, sum_in, exp_in, edu_in, skills_in, lang_in],
outputs=[md_out, docx_out, pdf_out, resume_state],
)
# Tab 2: Score Rรฉsumรฉ
with gr.Tab("๐งฎ Score Rรฉsumรฉ Against Job"):
res_in = gr.Textbox(value=resume_state, label="Rรฉsumรฉ (Markdown)", lines=10)
jd_in = gr.Textbox(value=jd_state, label="Job Description", lines=8)
score_out = gr.Markdown(label="Score & Suggestions")
btn_score = gr.Button("Evaluate")
btn_score.click(score_resume, inputs=[res_in, jd_in], outputs=score_out)
# Tab 3: AI Section Co-Pilot
with gr.Tab("โ๏ธ AI Section Co-Pilot"):
sec_in = gr.Textbox(label="Section Text", lines=6)
act_in = gr.Radio(
["Rewrite", "Make More Concise", "Quantify Achievements", "Convert to Bullet Points"],
label="Action"
)
lang_sec = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
sec_out = gr.Textbox(label="AI Output", lines=6)
btn_sec = gr.Button("Apply")
btn_sec.click(refine_section, inputs=[sec_in, act_in, lang_sec], outputs=sec_out)
# Tab 4: Cover-Letter Generator
with gr.Tab("๐ง Cover-Letter Generator"):
cv_res = gr.Textbox(label="Rรฉsumรฉ (Markdown)", lines=12)
cv_jd = gr.Textbox(label="Job Description", lines=8)
cv_tone = gr.Radio(["Professional", "Friendly", "Enthusiastic"], label="Tone")
cv_lang = gr.Dropdown(list(LANGS.keys()), value="EN", label="Language")
cv_out = gr.Markdown(label="Cover Letter")
btn_cv = gr.Button("Generate")
btn_cv.click(generate_cover_letter,
inputs=[cv_res, cv_jd, cv_tone, cv_lang],
outputs=cv_out)
# Tab 5: Universal Job Description Fetcher
with gr.Tab("๐ Fetch Job Description"):
url_in = gr.Textbox(label="Job URL")
jd_out = gr.Textbox(label="Job Description", lines=12)
btn_fetch = gr.Button("Fetch Description")
btn_fetch.click(
fetch_job_description,
inputs=[url_in],
outputs=[jd_out, jd_state],
)
demo.launch(share=False)
|