File size: 19,456 Bytes
d35b5b6 2213189 914e5a1 2213189 07c450c 2213189 07c450c 2213189 796e4f0 ec53fe0 2213189 ec53fe0 2213189 796e4f0 2213189 796e4f0 2213189 b1f52a5 0ad090a 796e4f0 2213189 796e4f0 6f46f3e 796e4f0 6f46f3e 796e4f0 2213189 ec53fe0 2213189 796e4f0 2213189 ec53fe0 2213189 796e4f0 2213189 796e4f0 2213189 b1f52a5 2213189 796e4f0 b1f52a5 2213189 796e4f0 6f46f3e 2213189 6f46f3e 0ad090a 2213189 6f46f3e 2213189 0ad090a 2213189 6f46f3e 0ad090a 6f46f3e 2213189 796e4f0 0ad090a ec53fe0 2213189 796e4f0 ec53fe0 b1f52a5 ec53fe0 796e4f0 0ad090a ec53fe0 0ad090a ec53fe0 0ad090a 796e4f0 ec53fe0 2e162a8 796e4f0 ec53fe0 796e4f0 2213189 796e4f0 2213189 796e4f0 2213189 796e4f0 2213189 796e4f0 276129d 2213189 b1f52a5 2213189 e69190c 2213189 b1f52a5 2213189 b1f52a5 2213189 796e4f0 ec53fe0 796e4f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import streamlit as st
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
from rdkit import Chem
from rdkit.Chem import Draw
from fpdf import FPDF
import tempfile
import time
import requests
import xml.etree.ElementTree as ET
import json
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Optional, Dict, List, Any
import os
import logging
# Setup logging
logging.basicConfig(level=logging.ERROR) #Log only errors
# API Endpoints (Centralized Configuration)
API_ENDPOINTS = {
"clinical_trials": "https://clinicaltrials.gov/api/v2/studies",
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
"pubmed": "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
"who_drugs": "https://health-products.canada.ca/api/drug/product",
#"ema_reports": "https://www.ema.europa.eu/api/search/medicines", #Removed due to 403
"fda_drug_approval": "https://api.fda.gov/drug/label.json", # Updated this to use base API
"faers_adverse_events": "https://api.fda.gov/drug/event.json", # Updated this to use base API
"pharmgkb": "https://api.pharmgkb.org/v1/data/variant/{}/clinicalAnnotations",
"bioportal": "https://data.bioontology.org/ontologies"
}
#Email addresses
#Email addresses
if "PUB_EMAIL" in st.secrets:
PUBMED_EMAIL = st.secrets["PUB_EMAIL"]
else:
PUBMED_EMAIL = None
st.error("PubMed email not found in secrets. Please add the PUB_EMAIL to secrets.")
CLINICALTRIALS_EMAIL = PUBMED_EMAIL
# Retrieve the BioPortal API Key from secrets
if "BIOPORTAL_API_KEY" in st.secrets:
BIOPORTAL_API_KEY = st.secrets["BIOPORTAL_API_KEY"]
else:
BIOPORTAL_API_KEY = None
st.error("BioPortal API key not found in secrets. Please add the BIOPORTAL_API_KEY to secrets.")
# Retrieve the OpenFDA API Key from secrets
if "OPENFDA_KEY" in st.secrets:
OPENFDA_KEY = st.secrets["OPENFDA_KEY"]
else:
OPENFDA_KEY = None
st.error("OpenFDA API key not found in secrets. Please add the OPENFDA_KEY to secrets.")
# Initialize AI Agent (Context-aware)
content_agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=HfApiModel())
# --- Utility Functions ---
def _query_api(endpoint: str, params: Optional[Dict] = None) -> Optional[Dict]:
"""Handles API requests with robust error handling."""
try:
response = requests.get(endpoint, params=params, timeout=15)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
return response.json()
except requests.exceptions.RequestException as e:
st.error(f"API request failed: {e} for endpoint {endpoint}. Please check connectivity and the endpoint.")
logging.error(f"API request failed: {e} for endpoint {endpoint}.")
return None
def _query_pubmed(query: str, email: Optional[str] = PUBMED_EMAIL) -> Optional[Dict]:
"""Queries PubMed with robust error handling."""
if not email:
st.error("PubMed email not configured.")
return None
params = {
"db": "pubmed",
"term": query,
"retmax": 10,
"retmode": "json",
"email": email
}
return _query_api(API_ENDPOINTS["pubmed"], params)
def _get_pubchem_smiles(drug_name: str) -> Optional[str]:
"""Retrieves SMILES from PubChem, returns None on failure."""
url = API_ENDPOINTS["pubchem"].format(drug_name)
data = _query_api(url)
if data and 'PC_Compounds' in data and data['PC_Compounds'][0]['props']:
#Check if props exists and find SMILES value
for prop in data['PC_Compounds'][0]['props']:
if 'name' in prop and prop['name'] == 'Canonical SMILES':
return prop['value']['sval']
return None
def _draw_molecule(smiles: str) -> Optional[any]:
"""Generates a 2D molecule image from SMILES."""
try:
mol = Chem.MolFromSmiles(smiles)
if mol:
img = Draw.MolToImage(mol)
return img
else:
st.error("Invalid SMILES string.")
return None
except Exception as e:
st.error(f"Error generating molecule image: {str(e)}")
logging.error(f"Error generating molecule image: {str(e)}")
return None
def _get_clinical_trials(query: str, email:Optional[str] = CLINICALTRIALS_EMAIL) -> Optional[Dict]:
"""Queries clinicaltrials.gov with search term."""
if not email:
st.error("Clinical Trials email not configured.")
return None
if query.upper().startswith("NCT") and query[3:].isdigit(): # Check if it's an NCT number
params = {
"id": query,
"fmt": "json"
}
else:
params = {
"query.term": query,
"fmt": "json",
"email": email
}
return _query_api(API_ENDPOINTS["clinical_trials"], params)
def _get_fda_approval(drug_name: str, api_key:Optional[str] = OPENFDA_KEY) -> Optional[Dict]:
"""Retrieves FDA approval info."""
if not api_key:
st.error("OpenFDA key not configured.")
return None
url = f"{API_ENDPOINTS['fda_drug_approval']}?api_key={api_key}&search=openfda.brand_name:\"{drug_name}\""
data = _query_api(url)
if data and 'results' in data and data['results']:
return data['results'][0]
else:
return None
def _analyze_adverse_events(drug_name: str, api_key:Optional[str] = OPENFDA_KEY, limit: int = 5) -> Optional[Dict]:
"""Fetches and analyzes adverse event reports from FAERS."""
if not api_key:
st.error("OpenFDA key not configured.")
return None
url = f"{API_ENDPOINTS['faers_adverse_events']}?api_key={api_key}&search=patient.drug.medicinalproduct:\"{drug_name}\"&limit={limit}"
data = _query_api(url)
if data and 'results' in data:
return data
else:
return None
def _get_pharmgkb_data(gene:str) -> Optional[Dict]:
"""Fetches pharmacogenomic data from PharmGKB."""
url = API_ENDPOINTS["pharmgkb"].format(gene)
data = _query_api(url)
if data and 'clinicalAnnotations' in data:
return data
else:
return None
def _get_bioportal_data(ontology: str, term: str) -> Optional[Dict]:
"""Fetches data from BioPortal."""
if not BIOPORTAL_API_KEY:
st.error("BioPortal API key not found. Please add the BIOPORTAL_API_KEY to secrets.")
return None
if not term:
st.error("Please provide a search term.")
return None
headers = {
"Authorization": f"apikey token={BIOPORTAL_API_KEY}"
}
params = {
"q": term,
"ontologies": ontology
}
url = f"{API_ENDPOINTS['bioportal']}/search"
try:
response = requests.get(url, headers=headers, params=params, timeout=15)
response.raise_for_status()
data = response.json()
if data and 'collection' in data:
return data
else:
st.warning("No results found for the BioPortal query.")
return None
except requests.exceptions.RequestException as e:
st.error(f"BioPortal API request failed: {e} Please check connectivity and ensure you have the correct API Key.")
logging.error(f"BioPortal API request failed: {e}")
return None
def _save_pdf_report(report_content: str, filename: str):
"""Saves content to a PDF file."""
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, report_content)
pdf.output(filename)
return filename
def _display_dataframe(data: list, columns: list):
"""Displays data in a dataframe format."""
if data:
df = pd.DataFrame(data, columns=columns)
st.dataframe(df)
return df
else:
st.warning("No data found for dataframe creation.")
return None
# --- Streamlit App Configuration ---
st.set_page_config(page_title="Pharma Research Expert Platform", layout="wide")
st.title("π¬ Pharma Research Expert Platform")
st.markdown("An integrated platform for drug discovery, clinical research, and regulatory affairs.")
# --- Tabs ---
tabs = st.tabs(["π Drug Development", "π Trial Analytics", "𧬠Molecular Profiling", "π Regulatory Intelligence", "π Literature Search"])
# --- Tab 1: Drug Development ---
with tabs[0]:
st.header("AI-Driven Drug Development Strategy")
target = st.text_input("Target Disease/Pathway:", placeholder="Enter biological target or disease mechanism")
target_gene = st.text_input("Target Gene (for pharmacogenomics)", placeholder="Enter the gene associated with target")
strategy = st.selectbox("Development Strategy:", ["First-in-class", "Me-too", "Repurposing", "Biologic"])
if st.button("Generate Development Plan"):
with st.spinner("Analyzing target and competitive landscape..."):
# AI-generated content with regulatory checks
plan_prompt = f"""Develop a comprehensive drug development plan for the treatment of {target} using a {strategy} strategy.
Include sections on target validation, lead optimization, preclinical testing, clinical trial design, regulatory submission strategy, market analysis, and competitive landscape. Highlight key milestones and potential challenges. """
plan = content_agent.run(plan_prompt)
st.subheader("Comprehensive Development Plan")
st.markdown(plan)
# Regulatory information
if target:
fda_info = _get_fda_approval(target.split()[0]) # Simple name extraction for FDA search
if fda_info:
st.subheader("FDA Regulatory Insights")
st.json(fda_info)
else:
st.write("No relevant FDA data found.")
else:
st.write("Please enter a target to get relevant FDA data")
# Pharmacogenomic integration
st.subheader("Pharmacogenomic Considerations")
pgx_data = _get_pharmgkb_data(target_gene)
if pgx_data:
st.write(pgx_data)
else:
st.write("No relevant pharmacogenomic data found.")
# --- Tab 2: Clinical Trial Analytics ---
with tabs[1]:
st.header("Clinical Trial Landscape Analytics")
trial_query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
if st.button("Analyze Trial Landscape"):
with st.spinner("Aggregating global trial data..."):
trials = _get_clinical_trials(trial_query)
if trials and trials['studies']:
st.subheader("Recent Clinical Trials")
trial_data = []
for study in trials['studies'][:5]:
trial_data.append({
"Title": study['briefTitle'],
"Status": study['overallStatus'],
"Phase": study['phase'] if 'phase' in study else 'Not Available',
"Enrollment": study['enrollmentCount'] if 'enrollmentCount' in study else 'Not Available'
})
trial_df = _display_dataframe(trial_data, list(trial_data[0].keys())) if trial_data else None
if trial_df is not None:
st.markdown("### Clinical Trial Summary (First 5 trials)")
st.dataframe(trial_df)
# Adverse events analysis
ae_data = _analyze_adverse_events(trial_query)
if ae_data and ae_data['results']:
st.subheader("Adverse Event Profile (Top 5 Reports)")
ae_results = ae_data['results'][:5]
ae_df = pd.DataFrame(ae_results)
st.dataframe(ae_df)
#Visualization of adverse events
if 'patient' in ae_df and not ae_df.empty:
try:
drug_events = []
for patient in ae_df['patient']:
if isinstance(patient,dict) and 'drug' in patient:
for drug in patient['drug']:
if isinstance(drug,dict) and 'medicinalproduct' in drug and 'reaction' in patient:
reactions = [reaction.get('reactionmeddrapt','') for reaction in patient['reaction']]
for r in reactions:
drug_events.append((drug.get('medicinalproduct', 'N/A'), r))
df_drug_events = pd.DataFrame(drug_events,columns=['Drug', 'Reaction'])
# Aggregate and Visualize top reactions
if not df_drug_events.empty:
top_reactions = df_drug_events['Reaction'].value_counts().nlargest(10)
fig, ax = plt.subplots(figsize=(10,6))
sns.barplot(x=top_reactions.index, y=top_reactions.values, ax=ax)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right")
plt.title('Top Adverse Reactions')
plt.xlabel('Adverse Reaction')
plt.ylabel('Frequency')
st.pyplot(fig)
#Display as dataframe
st.markdown("### Top 10 Adverse Reaction Summary")
st.dataframe(pd.DataFrame({'Reaction': top_reactions.index, 'Frequency': top_reactions.values}))
except Exception as e:
st.error(f"Error processing adverse events data: {e}")
else:
st.warning("No clinical trials found for the given search term.")
# --- Tab 3: Molecular Profiling ---
with tabs[2]:
st.header("Advanced Molecular Profiling")
compound_input = st.text_input("Compound Identifier:",
placeholder="Enter drug name, SMILES, or INN")
if st.button("Analyze Compound"):
with st.spinner("Querying global databases..."):
# SMILES resolution
smiles = compound_input if Chem.MolFromSmiles(compound_input) else _get_pubchem_smiles(compound_input)
if smiles:
img = _draw_molecule(smiles)
if img:
st.image(img, caption="2D Structure")
else:
st.error("Compound structure not found in databases.")
# PubChem properties
pubchem_data = _query_api(API_ENDPOINTS["pubchem"].format(compound_input))
if pubchem_data and 'PC_Compounds' in pubchem_data and pubchem_data['PC_Compounds']:
st.subheader("Physicochemical Properties")
props = pubchem_data['PC_Compounds'][0]['props']
mw = next((prop['value']['sval'] for prop in props if 'name' in prop and prop['name'] == 'Molecular Weight'), 'N/A')
logp = next((prop['value']['sval'] for prop in props if 'name' in prop and prop['name'] == 'LogP'), 'N/A')
st.write(f"""
Molecular Weight: {mw}
LogP: {logp}
""")
else:
st.error("Physicochemical properties not found.")
# --- Tab 4: Regulatory Intelligence ---
with tabs[3]:
st.header("Global Regulatory Monitoring")
drug_name = st.text_input("Drug Product:", placeholder="Enter generic or brand name")
if st.button("Generate Regulatory Report"):
with st.spinner("Compiling global regulatory status..."):
# Multi-regional checks
fda = _get_fda_approval(drug_name)
# ema = _query_api(API_ENDPOINTS["ema_reports"], {"search": drug_name}) #Removed EMA due to 403 error
who = _query_api(API_ENDPOINTS["who_drugs"], {"name": drug_name})
st.subheader("Regulatory Status")
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("**FDA Status**")
st.write(fda['openfda']['brand_name'][0] if fda and 'openfda' in fda and 'brand_name' in fda['openfda'] else "Not approved")
with col2:
st.markdown("**EMA Status**")
#st.write(ema['results'][0]['currentStatus'] if ema and 'results' in ema and ema['results'] else "Not approved") #Removed EMA due to 403 error
st.write("Not Available")
with col3:
st.markdown("**WHO Essential Medicine**")
st.write("Yes" if who else "No")
# Save the information to a PDF report
regulatory_content = f"### Regulatory Report\n\nFDA Status: {fda['openfda']['brand_name'][0] if fda and 'openfda' in fda and 'brand_name' in fda['openfda'] else 'Not Approved'}\n\nEMA Status: {'Not Available'}\n\nWHO Essential Medicine: {'Yes' if who else 'No'}"
report_file = _save_pdf_report(regulatory_content, f"{drug_name}_regulatory_report.pdf")
if report_file:
with open(report_file, "rb") as file:
st.download_button(
label="Download Regulatory Report (PDF)",
data=file,
file_name=f"{drug_name}_regulatory_report.pdf",
mime="application/pdf")
# --- Tab 5: Literature Search ---
with tabs[4]:
st.header("Literature Search")
search_term = st.text_input("Enter search query for PubMed:", placeholder="e.g., Alzheimer's disease genetics")
if st.button("Search PubMed"):
with st.spinner("Searching PubMed..."):
pubmed_data = _query_pubmed(search_term)
if pubmed_data and 'esearchresult' in pubmed_data and 'idlist' in pubmed_data['esearchresult'] and pubmed_data['esearchresult']['idlist']:
st.subheader("PubMed Search Results")
st.write(f"Found {len(pubmed_data['esearchresult']['idlist'])} results for '{search_term}':")
for article_id in pubmed_data['esearchresult']['idlist']:
st.write(f"- PMID: {article_id}")
else:
st.write("No results found for that term.")
st.header("Ontology Search")
ontology_search_term = st.text_input("Enter Search query for Ontology:", placeholder="Enter disease or ontology")
ontology_select = st.selectbox("Select Ontology", ["MESH","NCIT","GO", "SNOMEDCT"])
if st.button("Search BioPortal"):
with st.spinner("Searching Ontology..."):
bioportal_data = _get_bioportal_data(ontology_select, ontology_search_term)
if bioportal_data and 'collection' in bioportal_data:
st.subheader(f"BioPortal Search Results for {ontology_select}")
for result in bioportal_data['collection']:
st.write(f"- {result['prefLabel']} ({result['@id']})")
else:
st.write("No results found") |