File size: 24,840 Bytes
d35b5b6 07c450c 2213189 62a6d51 48811dc 796e4f0 443a674 62a6d51 48811dc 62a6d51 c4afc76 62a6d51 2213189 c4afc76 c1e3091 62a6d51 c4afc76 7cabb5b c4afc76 f977c40 c4afc76 f977c40 2213189 62a6d51 c4afc76 62a6d51 c4afc76 c1e3091 48811dc 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 7cabb5b 62a6d51 c4afc76 62a6d51 443a674 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 2213189 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 402d6f1 c4afc76 62a6d51 402d6f1 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 44a12f0 62a6d51 c4afc76 62a6d51 402d6f1 62a6d51 c4afc76 c1e3091 62a6d51 2213189 62a6d51 48811dc 62a6d51 c4afc76 62a6d51 c4afc76 44f93d2 62a6d51 44f93d2 62a6d51 c4afc76 62a6d51 c1e3091 62a6d51 44f93d2 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 c4afc76 62a6d51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import streamlit as st
import requests
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from rdkit import Chem
from rdkit.Chem import Draw
from fpdf import FPDF
import tempfile
import logging
import os
import plotly.graph_objects as go
import networkx as nx
from typing import Optional, Dict, List, Any
from datetime import datetime
# -------------------------------
# STREAMLIT CONFIGURATION & LOGGING
# -------------------------------
st.set_page_config(page_title="Pharma Research Expert Platform", layout="wide")
logging.basicConfig(level=logging.ERROR)
# -------------------------------
# API ENDPOINTS (Using only Stable Sources)
# -------------------------------
API_ENDPOINTS = {
"clinical_trials": "https://clinicaltrials.gov/api/v2/studies", # No email required now
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
"pubmed": "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
"fda_drug_approval": "https://api.fda.gov/drug/label.json",
"faers_adverse_events": "https://api.fda.gov/drug/event.json",
# PharmGKB endpoint for gene variants (if available)
"pharmgkb_gene_variants": "https://api.pharmgkb.org/v1/data/gene/{}/variants",
# RxNorm endpoints
"rxnorm_rxcui": "https://rxnav.nlm.nih.gov/REST/rxcui.json",
"rxnorm_properties": "https://rxnav.nlm.nih.gov/REST/rxcui/{}/properties.json",
# RxClass endpoint (may return no data, so we provide a fallback message)
"rxclass_by_drug": "https://rxnav.nlm.nih.gov/REST/class/byDrugName.json"
}
# -------------------------------
# TRADE-TO-GENERIC MAPPING (FALLBACK)
# -------------------------------
TRADE_TO_GENERIC = {
"tylenol": "acetaminophen",
"panadol": "acetaminophen",
"advil": "ibuprofen",
# Add additional mappings as needed
}
# -------------------------------
# RETRIEVE SECRETS
# -------------------------------
OPENAI_API_KEY = st.secrets.get("OPENAI_API_KEY")
OPENFDA_KEY = st.secrets.get("OPENFDA_KEY")
PUB_EMAIL = st.secrets.get("PUB_EMAIL")
if not PUB_EMAIL:
st.error("PUB_EMAIL is not configured in secrets.")
if not OPENFDA_KEY:
st.error("OPENFDA_KEY is not configured in secrets.")
if not OPENAI_API_KEY:
st.error("OPENAI_API_KEY is not configured in secrets.")
# -------------------------------
# INITIALIZE OPENAI (GPT-4) CLIENT
# -------------------------------
from openai import OpenAI
openai_client = OpenAI(api_key=OPENAI_API_KEY)
def generate_ai_content(prompt: str) -> str:
"""Generate innovative insights using GPT‑4."""
try:
response = openai_client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
max_tokens=300
)
return response.choices[0].message.content.strip()
except Exception as e:
st.error(f"GPT‑4 generation error: {e}")
logging.error(e)
return "AI content generation failed."
# -------------------------------
# UTILITY FUNCTIONS (with caching)
# -------------------------------
@st.cache_data(show_spinner=False)
def query_api(endpoint: str, params: Optional[Dict] = None, headers: Optional[Dict] = None) -> Optional[Dict]:
"""HTTP GET with error handling and caching."""
try:
response = requests.get(endpoint, params=params, headers=headers, timeout=15)
response.raise_for_status()
return response.json()
except Exception as e:
st.error(f"API error for {endpoint}: {e}")
logging.error(e)
return None
@st.cache_data(show_spinner=False)
def get_pubchem_drug_details(drug_name: str) -> Optional[Dict[str, str]]:
"""Retrieve drug details (including molecular formula, IUPAC name, and SMILES) from PubChem."""
url = API_ENDPOINTS["pubchem"].format(drug_name)
data = query_api(url)
details = {}
if data and data.get("PC_Compounds"):
compound = data["PC_Compounds"][0]
for prop in compound.get("props", []):
urn = prop.get("urn", {})
if urn.get("label") == "Molecular Formula":
details["Molecular Formula"] = prop["value"]["sval"]
if urn.get("name") == "Preferred":
details["IUPAC Name"] = prop["value"]["sval"]
if prop.get("name") == "Canonical SMILES":
details["Canonical SMILES"] = prop["value"]["sval"]
return details
return None
def save_pdf_report(report_content: str, filename: str) -> Optional[str]:
"""Save a text report as a PDF file using FPDF."""
try:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, report_content)
pdf.output(filename)
return filename
except Exception as e:
st.error(f"Error saving PDF: {e}")
logging.error(e)
return None
@st.cache_data(show_spinner=False)
def get_clinical_trials(query: str) -> Optional[Dict]:
"""Query ClinicalTrials.gov (NCT number or term search)."""
if query.upper().startswith("NCT") and query[3:].isdigit():
params = {"id": query, "fmt": "json"}
else:
params = {"query.term": query, "retmax": 10, "retmode": "json"}
return query_api(API_ENDPOINTS["clinical_trials"], params)
@st.cache_data(show_spinner=False)
def get_pubmed(query: str) -> Optional[Dict]:
"""Query PubMed using the given search term."""
params = {"db": "pubmed", "term": query, "retmax": 10, "retmode": "json", "email": PUB_EMAIL}
return query_api(API_ENDPOINTS["pubmed"], params)
@st.cache_data(show_spinner=False)
def get_fda_approval(drug_name: str) -> Optional[Dict]:
"""Retrieve FDA drug approval data using openFDA."""
query = f'openfda.brand_name:"{drug_name}"'
params = {"api_key": OPENFDA_KEY, "search": query, "limit": 1}
data = query_api(API_ENDPOINTS["fda_drug_approval"], params)
if data and data.get("results"):
return data["results"][0]
return None
@st.cache_data(show_spinner=False)
def analyze_adverse_events(drug_name: str, limit: int = 5) -> Optional[Dict]:
"""Retrieve adverse event data from FAERS."""
query = f'patient.drug.medicinalproduct:"{drug_name}"'
params = {"api_key": OPENFDA_KEY, "search": query, "limit": limit}
return query_api(API_ENDPOINTS["faers_adverse_events"], params)
@st.cache_data(show_spinner=False)
def get_rxnorm_rxcui(drug_name: str) -> Optional[str]:
"""Retrieve the RxCUI for a drug from RxNorm."""
url = f"{API_ENDPOINTS['rxnorm_rxcui']}?name={drug_name}"
data = query_api(url)
if data and "idGroup" in data and data["idGroup"].get("rxnormId"):
return data["idGroup"]["rxnormId"][0]
st.warning(f"No RxCUI found for {drug_name}.")
return None
@st.cache_data(show_spinner=False)
def get_rxnorm_properties(rxcui: str) -> Optional[Dict]:
"""Retrieve RxNorm properties for a given RxCUI."""
url = API_ENDPOINTS["rxnorm_properties"].format(rxcui)
return query_api(url)
@st.cache_data(show_spinner=False)
def get_rxclass_by_drug_name(drug_name: str) -> Optional[Dict]:
"""Query RxClass for drug classification info. (Fallback if no data is returned.)"""
url = f"{API_ENDPOINTS['rxclass_by_drug']}?drugName={drug_name}"
data = query_api(url)
return data # May return None if no data is found
def create_variant_network(gene: str, variants: List[str], annotations: Dict[str, List[str]]) -> go.Figure:
"""Generate a gene-variant-drug network graph using NetworkX and Plotly."""
G = nx.Graph()
G.add_node(gene, color="lightblue")
for variant in variants:
G.add_node(variant, color="lightgreen")
G.add_edge(gene, variant)
for drug in annotations.get(variant, []):
if drug and drug != "N/A":
G.add_node(drug, color="lightcoral")
G.add_edge(variant, drug)
pos = nx.spring_layout(G)
edge_x, edge_y = [], []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y, line=dict(width=1, color="#888"),
hoverinfo="none", mode="lines"
)
node_x, node_y, node_text, node_color = [], [], [], []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_text.append(node)
node_color.append(G.nodes[node].get("color", "gray"))
node_trace = go.Scatter(
x=node_x, y=node_y, mode="markers+text", hoverinfo="text",
text=node_text, textposition="bottom center",
marker=dict(color=node_color, size=12, line_width=2)
)
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=dict(text="Gene-Variant-Drug Network", font=dict(size=16)),
showlegend=False,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
))
return fig
# -------------------------------
# AI-DRIVEN DRUG INSIGHTS
# -------------------------------
def generate_drug_insights(drug_name: str) -> str:
"""
Gather data from FDA, PubChem, RxNorm, and RxClass (using generic fallback) and build a GPT‑4 prompt
for an innovative, bullet‑point drug analysis.
"""
query_name = TRADE_TO_GENERIC.get(drug_name.lower(), drug_name)
# FDA Data
fda_info = get_fda_approval(query_name)
fda_status = "Not Approved"
if fda_info and fda_info.get("openfda", {}).get("brand_name"):
fda_status = ", ".join(fda_info["openfda"]["brand_name"])
# PubChem Data
pubchem_details = get_pubchem_drug_details(query_name)
if pubchem_details:
formula = pubchem_details.get("Molecular Formula", "N/A")
iupac = pubchem_details.get("IUPAC Name", "N/A")
canon_smiles = pubchem_details.get("Canonical SMILES", "N/A")
else:
formula = iupac = canon_smiles = "Not Available"
# RxNorm Data
rxnorm_id = get_rxnorm_rxcui(query_name)
if rxnorm_id:
rx_props = get_rxnorm_properties(rxnorm_id)
rxnorm_info = f"RxCUI: {rxnorm_id}\nProperties: {rx_props}"
else:
rxnorm_info = "No RxNorm data available."
# RxClass Data
rxclass_data = get_rxclass_by_drug_name(query_name)
rxclass_info = rxclass_data if rxclass_data else "No RxClass data available."
# Construct prompt for GPT‑4
prompt = (
f"Provide an innovative, advanced drug analysis for '{drug_name}' (generic: {query_name}).\n\n"
f"**FDA Approval Status:** {fda_status}\n\n"
f"**PubChem Details:**\n"
f"- Molecular Formula: {formula}\n"
f"- IUPAC Name: {iupac}\n"
f"- Canonical SMILES: {canon_smiles}\n\n"
f"**RxNorm Info:** {rxnorm_info}\n\n"
f"**RxClass Info:** {rxclass_info}\n\n"
f"Include in bullet points:\n"
f"- Pharmacogenomic considerations (e.g. genetic variants impacting metabolism or toxicity)\n"
f"- Potential repurposing opportunities and innovative therapeutic insights\n"
f"- Regulatory challenges and suggestions for personalized medicine approaches\n"
f"- Forward‑looking recommendations for future research and integration of diverse data sources\n"
)
return generate_ai_content(prompt)
# -------------------------------
# STREAMLIT APP LAYOUT
# -------------------------------
tabs = st.tabs([
"💊 Drug Development",
"📊 Trial Analytics",
"🧬 Molecular Profiling",
"📜 Regulatory Intelligence",
"📚 Literature Search",
"📈 Dashboard",
"🧪 Drug Data Integration",
"🤖 AI Insights"
])
# ----- Tab 1: Drug Development -----
with tabs[0]:
st.header("AI‑Driven Drug Development Strategy")
target = st.text_input("Target Disease/Pathway:", placeholder="Enter disease mechanism or target")
target_gene = st.text_input("Target Gene (PharmGKB Accession):", placeholder="e.g., PA1234")
strategy = st.selectbox("Development Strategy:", ["First-in-class", "Me-too", "Repurposing", "Biologic"])
if st.button("Generate Development Plan"):
with st.spinner("Generating comprehensive development plan..."):
plan_prompt = (
f"Develop a detailed drug development plan for treating {target} using a {strategy} strategy. "
"Include sections on target validation, lead optimization, preclinical testing, clinical trial design, "
"regulatory strategy, market analysis, competitive landscape, and pharmacogenomic considerations."
)
plan = generate_ai_content(plan_prompt)
st.subheader("Comprehensive Development Plan")
st.markdown(plan)
st.subheader("FDA Regulatory Insights")
if target:
fda_data = get_fda_approval(target.split()[0])
if fda_data:
st.json(fda_data)
else:
st.write("No FDA data found for the given target.")
st.subheader("Pharmacogenomic Considerations")
if target_gene:
if not target_gene.startswith("PA"):
st.warning("Enter a valid PharmGKB accession (e.g., PA1234).")
else:
variants = get_pharmgkb_variants_for_gene(target_gene)
if variants:
st.write("PharmGKB Variants:")
st.write(variants)
# Optionally, display network graph if variant annotations are available.
sample_annots = {}
for vid in variants[:3]:
# Here you would normally fetch annotations.
# For demonstration, we set a dummy list:
sample_annots[vid] = ["DrugA", "DrugB"]
try:
net_fig = create_variant_network(target_gene, variants[:3], sample_annots)
st.plotly_chart(net_fig, use_container_width=True)
except Exception as e:
st.error(f"Network graph error: {e}")
else:
st.write("No variants found for the specified PharmGKB gene accession.")
else:
st.write("Provide a PharmGKB gene accession to retrieve pharmacogenomic data.")
# ----- Tab 2: Clinical Trial Analytics -----
with tabs[1]:
st.header("Clinical Trial Landscape Analytics")
trial_query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
if st.button("Analyze Trial Landscape"):
with st.spinner("Fetching trial data..."):
trials = get_clinical_trials(trial_query)
if trials and trials.get("studies"):
trial_data = []
for study in trials["studies"][:5]:
trial_data.append({
"Title": study.get("protocolSection", {}).get("identificationModule", {}).get("briefTitle", "N/A"),
"Status": study.get("protocolSection", {}).get("statusModule", {}).get("overallStatus", "N/A"),
"Phase": study.get("protocolSection", {}).get("designModule", {}).get("phases", ["Not Available"])[0],
"Enrollment": study.get("protocolSection", {}).get("designModule", {}).get("enrollmentInfo", {}).get("count", "N/A")
})
df_trials = pd.DataFrame(trial_data)
st.dataframe(df_trials)
else:
st.warning("No clinical trials found for the query.")
ae_data = analyze_adverse_events(trial_query)
if ae_data and ae_data.get("results"):
st.subheader("Adverse Event Profile (Top 5)")
ae_results = ae_data["results"][:5]
ae_df = pd.json_normalize(ae_results)
st.dataframe(ae_df)
if "patient.reaction.reactionmeddrapt" in ae_df.columns:
try:
reactions = ae_df["patient.reaction.reactionmeddrapt"].explode().dropna()
top_reactions = reactions.value_counts().nlargest(10)
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x=top_reactions.values, y=top_reactions.index, ax=ax)
ax.set_title("Top Adverse Reactions")
ax.set_xlabel("Frequency")
ax.set_ylabel("Reaction")
st.pyplot(fig)
except Exception as e:
st.error(f"Error visualizing adverse events: {e}")
else:
st.write("No adverse event data available.")
# ----- Tab 3: Advanced Molecular Profiling -----
with tabs[2]:
st.header("Advanced Molecular Profiling")
compound_input = st.text_input("Compound Identifier:", placeholder="Enter drug name, SMILES, or INN")
if st.button("Analyze Compound"):
with st.spinner("Querying PubChem for molecular structure and properties..."):
# Use trade-to-generic mapping
query_compound = TRADE_TO_GENERIC.get(compound_input.lower(), compound_input)
pubchem_info = get_pubchem_drug_details(query_compound)
if pubchem_info:
smiles = pubchem_info.get("Canonical SMILES")
if smiles and smiles != "N/A":
mol_image = draw_molecule(smiles)
if mol_image:
st.image(mol_image, caption="2D Molecular Structure")
else:
st.error("Canonical SMILES not found for this compound.")
st.subheader("Physicochemical Properties")
st.write(f"**Molecular Formula:** {pubchem_info.get('Molecular Formula', 'N/A')}")
st.write(f"**IUPAC Name:** {pubchem_info.get('IUPAC Name', 'N/A')}")
st.write(f"**Canonical SMILES:** {pubchem_info.get('Canonical SMILES', 'N/A')}")
else:
st.error("PubChem details not available for the given compound.")
# ----- Tab 4: Global Regulatory Monitoring -----
with tabs[3]:
st.header("Global Regulatory Monitoring")
st.markdown("**Note:** This section focuses on FDA data and PubChem drug details due to limitations with EMA/WHO/DailyMed APIs.")
drug_prod = st.text_input("Drug Product:", placeholder="Enter generic or brand name")
if st.button("Generate Regulatory Report"):
with st.spinner("Compiling regulatory data..."):
fda_data = get_fda_approval(drug_prod)
fda_status = "Not Approved"
if fda_data and fda_data.get("openfda", {}).get("brand_name"):
fda_status = ", ".join(fda_data["openfda"]["brand_name"])
pubchem_details = get_pubchem_drug_details(drug_prod)
if pubchem_details:
formula = pubchem_details.get("Molecular Formula", "N/A")
iupac = pubchem_details.get("IUPAC Name", "N/A")
canon_smiles = pubchem_details.get("Canonical SMILES", "N/A")
else:
formula = iupac = canon_smiles = "Not Available"
col1, col2 = st.columns(2)
with col1:
st.markdown("**FDA Status**")
st.write(fda_status)
with col2:
st.markdown("**Drug Details (PubChem)**")
st.write(f"**Molecular Formula:** {formula}")
st.write(f"**IUPAC Name:** {iupac}")
st.write(f"**Canonical SMILES:** {canon_smiles}")
report_text = (
f"### Regulatory Report for {drug_prod}\n\n"
f"**FDA Status:** {fda_status}\n\n"
f"**Molecular Formula:** {formula}\n\n"
f"**IUPAC Name:** {iupac}\n\n"
f"**Canonical SMILES:** {canon_smiles}\n"
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
pdf_file = save_pdf_report(report_text, tmp.name)
if pdf_file:
with open(pdf_file, "rb") as f:
st.download_button("Download Regulatory Report (PDF)", data=f, file_name=f"{drug_prod}_report.pdf", mime="application/pdf")
os.remove(pdf_file)
# ----- Tab 5: Literature Search -----
with tabs[4]:
st.header("Literature Search")
lit_query = st.text_input("Enter search query for PubMed:", placeholder="e.g., Alzheimer's disease genetics")
if st.button("Search PubMed"):
with st.spinner("Searching PubMed..."):
pubmed_results = get_pubmed(lit_query)
if pubmed_results and pubmed_results.get("esearchresult", {}).get("idlist"):
id_list = pubmed_results["esearchresult"]["idlist"]
st.subheader(f"Found {len(id_list)} PubMed Results")
for pmid in id_list:
st.markdown(f"- [PMID: {pmid}](https://pubmed.ncbi.nlm.nih.gov/{pmid}/)")
else:
st.write("No PubMed results found.")
# (Ontology search removed due to unreliable endpoints)
# ----- Tab 6: Comprehensive Dashboard -----
with tabs[5]:
st.header("Comprehensive Dashboard")
# Static sample KPIs – these can be replaced with dynamic aggregated data in the future
kpi_fda = 5000
kpi_trials = 12000
kpi_pubs = 250000
col1, col2, col3 = st.columns(3)
col1.metric("FDA Approved Drugs", kpi_fda)
col2.metric("Ongoing Trials", kpi_trials)
col3.metric("Publications", kpi_pubs)
st.subheader("Trend Analysis")
years = list(range(2000, 2026))
approvals = [kpi_fda // len(years)] * len(years)
fig_trend, ax_trend = plt.subplots(figsize=(10, 6))
sns.lineplot(x=years, y=approvals, marker="o", ax=ax_trend)
ax_trend.set_title("FDA Approvals Over Time")
ax_trend.set_xlabel("Year")
ax_trend.set_ylabel("Number of Approvals")
st.pyplot(fig_trend)
st.subheader("Gene-Variant-Drug Network (Sample)")
# Sample network using dummy data
sample_gene = "CYP2C19"
sample_variants = ["rs4244285", "rs12248560"]
sample_annots = {"rs4244285": ["Clopidogrel", "Omeprazole"], "rs12248560": ["Sertraline"]}
try:
net_fig = create_variant_network(sample_gene, sample_variants, sample_annots)
st.plotly_chart(net_fig, use_container_width=True)
except Exception as e:
st.error(f"Network graph error: {e}")
# ----- Tab 7: Drug Data Integration -----
with tabs[6]:
st.header("🧪 Drug Data Integration")
drug_integration = st.text_input("Enter Drug Name for API Integration:", placeholder="e.g., aspirin")
if st.button("Retrieve Drug Data"):
with st.spinner("Fetching drug data from multiple sources..."):
query_drug = TRADE_TO_GENERIC.get(drug_integration.lower(), drug_integration)
rxnorm_id = get_rxnorm_rxcui(query_drug)
rx_props = get_rxnorm_properties(rxnorm_id) if rxnorm_id else None
rxclass_info = get_rxclass_by_drug_name(query_drug)
st.subheader("RxNorm Data")
if rxnorm_id:
st.write(f"RxCUI for {drug_integration}: {rxnorm_id}")
st.json(rx_props if rx_props else {"message": "No RxNorm properties found."})
else:
st.write("No RxCUI found for the given drug name.")
st.subheader("RxClass Information")
if rxclass_info:
st.json(rxclass_info)
else:
st.write("No RxClass data found for the given drug.")
pubchem_info = get_pubchem_drug_details(query_drug)
st.subheader("PubChem Drug Details")
if pubchem_info:
st.write(f"**Molecular Formula:** {pubchem_info.get('Molecular Formula', 'N/A')}")
st.write(f"**IUPAC Name:** {pubchem_info.get('IUPAC Name', 'N/A')}")
st.write(f"**Canonical SMILES:** {pubchem_info.get('Canonical SMILES', 'N/A')}")
else:
st.write("No PubChem details found.")
# ----- Tab 8: AI Insights -----
with tabs[7]:
st.header("🤖 AI Insights")
ai_drug = st.text_input("Enter Drug Name for AI-Driven Analysis:", placeholder="e.g., tylenol")
if st.button("Generate AI Insights"):
with st.spinner("Generating AI-driven insights..."):
query_ai_drug = TRADE_TO_GENERIC.get(ai_drug.lower(), ai_drug)
insights_text = generate_drug_insights(query_ai_drug)
st.subheader("AI‑Driven Drug Analysis")
st.markdown(insights_text)
|